APPENDIX A ## DISTRIBUTION, LIFE CYCLE, TAXONOMY, AND CULTURE METHODS ## A.1. CERIODAPHNIA DUBIA #### 1. SYSTEMATICS #### 1.1 MORPHOLOGY AND TAXONOMY - 1.1.1 *Ceriodaphnia* are closely related and morphologically similar to *Daphnia*, but are smaller and have a shorter generation time (USEPA, 1986). They are generally more rotund, lack the prominent rostral projection typical of *Daphnia*, and do not develop the dorsal helmets and long posterior spines often observed in *Daphnia*. - 1.1.2 With *Ceriodaphnia dubia*, the female has a heavy, setulated pecten on the postabdominal claw (Figure 1A), and the male was long antennules (Figure 1C), in contrast to the closely related *C. reticulata*, where the female has heavy, triangular denticles in the pecten of the postabdominal claw (Figure 2A), and the male has very short antennules (Figure 2C). Some clones having intermediate characters may be hybrids or phenotypic variants of *C. dubia* (USEPA, 1986). Detailed descriptions of the males and females of both species and the variant were given by USEPA (1986). - 1.1.3 Although males are very similar to females, they can be recognized by their rapid, erratic swimming habit, smaller size, denser coloration, extended antennules and claspers, and rostrum morphology. ## 2. ECOLOGY AND LIFE HISTORY ### 2.1 DISTRIBUTION 2.1.1 *C. dubia*, has been reported from littoral areas of lakes, ponds, and marshes throughout most of the world, but it is difficult to ascertain its true distribution because it has been reported in the literature under several other names (*C. affinis*, *C. quadrangula*, and *C. reticulata*). It has also been suggested that reports of *C. dubia* in New Zealand and parts of Asia may be yet another unnamed species (Berner, personal communication). ## 2.2 ECOLOGY - 2.2.1 Ceriodaphnia ecology and life history are very similar to those of other daphnids. Specific information on the ecology and life history of Ceriodaphnia dubia is either not available or is widely scattered throughout the literature. However, it is known to be a pond and lake dwelling species that is usually common among the vegetation in littoral areas (Fairchild, 1981). In the Lake of Velence, Hungary, C. dubia was most common in regions where "grey" and "dark brown" waters merged (Pal, 1980). In Par Pond (Savannah River Plant, Aiken, SC) the Ceriodaphnia were much more abundant in the heated water (effluent from the nuclear reactor) than in the ambient area (Vigerstad and Tilly, 1977), and in a reservoir in Russia, animals from the heated water were larger and heavier than those living under normal water temperatures (Kititsyna and Sergeeva, 1976). In Iran they are common in warmer, montane, oligotrophic lakes (Smagowicz, 1976). - 2.2.2 In Lake Kinneret, Israel, *Ceriodaphnia reticulata* are abundant only between March and June, with a peak in May when the temperature ranges between 20 and 22°C. When summer temperatures reached 27-28°C, the *Ceriodaphnia* were reduced in size and egg production became significantly less, leading to a progressive decline of the population (Gophen, 1976). In Lake Parvin, France, the period of development was from June to September (Devaux, 1980). Figure 1. *Ceriodaphnia dubia*. A. (1) parthenogenetic female, (2) postabdomen, and (3) claw; B. ephippial female; C. Male. (From USEPA, 1986) Figure 2. *Ceriodaphnia reticulata*. A. (1) parthenogenetic female, (2) postabdomen, (3) and claw; B. ephippial female; C. Male. (From USEPA, 1986) - 2.2.3 *Ceriodaphnia* typically swim with an erratic, jerking motion for a period of time, and hang motionless in the water between swimming bouts. This swimming behavior results in a mean speed of 1.5-2.5 mm/s. When approached by a predator, however, it flees by swimming away quickly along a straight path (Wong, 1981). - 2.2.4 During most of the year, populations of *Ceriodaphnia* consist almost entirely of females; the males appearing principally in autumn. Production of males appears to be induced primarily by low water temperatures, high population densities, and/or a decrease in available food. As far as is presently known, *C. dubia* reproduce only by cyclic parthenogenesis in which the males contribute to the genetic makeup of the young during the sexual stage of reproduction. - 2.2.5 The females tend to aggregate during sexual reproductive activity, when ephippia are produced (Brandl and Fernando, 1971). Ephippia are embryos encased in a tough covering, and are resistent to drying. They can be stored for long periods and shipped through the mail in envelopes, like seeds. When placed in water at the proper temperature, ephippia hatch in a few days producing a new parthenogenetic population. - 2.2.6 *Ceriodaphnia* have many predators, including fish, the mysid *Mysis relicta, Chaoborus* larvae, and copepods. As with *Daphnia*, it also reacts to intense predation with defensive strategies. *Ceriodaphnia reticulata* (possibly *C.dubia*) in a Minnesota lake, reacted to the copepod, *Cyclops vernalis*, by producing large offspring and growing to a large size at the expense of early reproduction (Lynch, 1979). They reacted to fish predators by producing smaller offspring in larger numbers. #### 2.3 FOOD AND FEEDING - 2.3.1 Cladocera are polyphagous feeders and find their food in the seston. Daphnids, including the *Ceriodaphnia*, are classified as fine mesh filter feeders by Geller and Mueller (1981). These fine mesh filter feeders are most abundant in eutrophic lakes during summer phytoplankton blooms when suspended bacteria are available as food only for filter-feeding species with fine mesh. - 2.3.2 Lynch (1978) examined the gut contents of *Ceriodaphnia reticulata* (possibly *C. dubia*) from a Minnesota pond and found bacteria, detritus and partially digested algae. In this pond, *Ceriodaphnia* and *Daphnia pulex* shared the same resource base and had very similar diets, but the *Ceriodaphnia* fed more intensively on diatoms. The *Ceriodaphnia* were considered to be less sensitive to low food levels than *Daphnia*, because of their high rate of population growth during periods of low food levels in late summer. ### 2.4 LIFE CYCLE - 2.4.1 Four distinct periods may be recognized in the life cycle of *Ceriodaphnia*: (1) egg, (2) juvenile, (3) adolescent, and (4) adult. The life span of *Ceriodaphnia*, from the release of the egg into the brood chamber until the death of the adult, is highly variable depending on the temperature and other environmental conditions. Generally the life span increases as temperature decreases, due to lowered metabolic activity. For example, the average life span of *Ceriodaphnia dubia* is about 30 days at 25°C, and 50 days at 20°C. One female was reported to have lived 125 days and produced 29 broods at 20°C (Cowgill et al., 1985). - 2.4.2 Typically, a clutch of 4 to 10 eggs is released into the brood chamber, but clutches with as many as 20 eggs are common. The eggs hatch in the brood chamber and the juveniles, which are already similar in form to the adults, are released in approximately 38 h, when the female molts (casts off her exoskeleton or carapace). The total number of young produced per female varies with temperature and other environmental conditions. The most young are produced in the range of 18-25°C (124 young per female in a 28-day life span at 24°C) (113 young per female in a 77-day life span at 18°C) but production falls off sharply below 18°C (13 young per female in a 24-day life span at 12°C) (McNaught and Mount, 1985). - 2.4.3 The time required to reach maturity (produce their first offspring) in *C.dubia* varies from three to five days and appears to be dependent on body size and environmental conditions. A study of the growth and development of parthenogenetic eggs by Shuba and Costa (1972) revealed that at 24°C the embryos matured to free-swimming juveniles in approximately 38 h. The eggs that did not develop fully usually were aborted after 12 hours. - 2.4.4 The growth rate of the organism is greatest during its juvenile stages (early instars), and the body size may double during each of these stages. Each instar stage is terminated by a molt. Growth occurs immediately after each molt while the new carapace is still elastic. - 2.4.5 Following the juvenile stages, the adolescent period is very short, and consists of a single instar. It is during the adolescent instar that the first clutch of eggs reaches full development in the ovary. Generally, eggs are deposited in the brood chamber within minutes after molting, and the young which develop are released just before the next molt. - 2.4.6 In general, the duration of instars increases with age, but also depends on environmental conditions. A given instar usually lasts approximately 24 h under favorable conditions. However, when conditions are unfavorable, it may last as long as a week. Four events take place in a matter of a few minutes at the end of each adult instar: (1) release of young from the brood chamber to the outside, (2) molting, (3) increase in size, and (4) release of a new clutch of eggs into the brood chamber. The number of young per brood is highly variable, depending primarily on food availability and environmental conditions. *C. dubia* may produce as many as 25 young in a single brood, but more commonly the number is six to ten. The number of young released during the adult instars reaches a maximum at about the fourth instar, after which there is a gradual decrease. #### 3. CULTURING METHODS - 3.1 *Ceriodaphnia* are available from commercial biological supply houses. Guidance on the source of culture animals to be used by a permittee for self-monitoring effluent toxicity tests should be obtained from the permitting authority. Only a small number of organisms (20-30) are needed to start a culture. Before test organisms are taken from a culture, the culture should be maintained for at least two generations using the same food, water, and temperature as
will be used in the toxicity tests. - 3.2 Cultures of test organisms should be started at least three weeks before the brood animals are needed, to ensure an adequate supply of neonates for the test. Only a few individuals are needed to start a culture because of their prolific reproduction. - 3.3 Starter animals may be obtained from an outside source by shipping in polyethylene bottles. Approximately 20-30 animals and 3 mL of food (see below) are placed in a l-L bottle filled full with culture water. Animals received from an outside source should be transferred to new culture media gradually over a period of 1-2 days to avoid mass mortality. - 3.4 It is best to start the cultures with one animal, which is sacrificed after producing young, embedded, and retained as a permanent microscope slide mount to facilitate identification and permit future reference. The species identification of the stock culture should be verified by a taxonomic authority. The following procedure is recommended for making slide mounts of *Ceriodaphnia* (Beckett and Lewis, 1982): - 1. Pipet the animal onto a watch glass. - 2. Reduce the water volume by withdrawing excess water with the pipet. - 3. Add a few drops of carbonated water (club soda or seltzer water) or 70% ethanol to relax the specimen so that the post-abdomen is extended. (Optional: with practice, extension of the postabdomen may be accomplished by putting pressure on the cover slip). - 4. Place a small amount (one to three drops) of mounting medium on a glass microscope slide. The recommended mounting medium is CMCP-9/9AF Medium, prepared by mixing two parts of CMCP-9 with - one part of CMCP-9AF. For more viscosity and faster drying, CMC-10 stained with acid fuchsin may be used. - 5. Using a forceps or a pipet, transfer the animal to the drop of mounting medium on the microscope slide. - 6. Cover with a cover slip and exert minimum pressure to remove any air bubbles trapped under the cover slip. Slightly more pressure will extend the postabdomen. - 7. Allow mounting medium to dry. - 8. Make slide permanent by placing CMC-10 around the edges of the coverslip. - 9. Identify to species (see Pennak, 1989, and USEPA, 1986). - 10. Label with waterproof ink or diamond pencil. - 11. Store for permanent record. ### 3.5 CULTURE MEDIA - 3.5.1 Although *Ceriodaphnia* stock cultures can be successfully maintained in some tap waters, well waters, and surface waters, use of synthetic water as the culture medium is recommended because (1) it is easily prepared, (2) it is of known quality, (3) it yields reproducible results, and (4) allows adequate growth and reproduction. Culturing may be successfully done in hard, moderately hard or soft reconstituted water, depending on the hardness of the water in which the test will be conducted. The quality of the dilution water is extremely important in *Ceriodaphnia* culture. The use of MILLIPORE MILLI-Q® or SUPER-Q®, or equivalent, to prepare reconstituted water is highly recommended. The use of diluted mineral water (DMW) for culturing and testing is widespread due to the ease of preparation. - 3.5.2 The chemicals used and instructions for preparation of reconstituted water are given in Section 7, Dilution Water. The compounds are dissolved in distilled or deionized water and the media are vigorously aerated for several hours before using. The initial pH of the media is between 7.0 and 8.0, but it will rise as much as 0.5 unit after the test is underway. ### 3.6 MASS CULTURE - 3.6.1 Mass cultures are used only as a "backup" reservoir of organisms. Neonates from mass cultures are not to be used directly in toxicity tests. - 3.6.2 One-liter or 2L glass beakers, crystallization dishes, "battery jars," or aquaria may be used as culture vessels. Vessels are commonly filled to three-fourths capacity. Cultures are fed daily. Four or more cultures are maintained in separate vessels and with overlapping ages to serve as back-up in case one culture is lost due to accident or other unanticipated problems, such as low DO concentrations or poor quality of food or laboratory water. - 3.6.3 Mass cultures which will serve as a source of brood organisms for individual culture should be maintained in good condition by frequent renewal of the medium and brood organisms. Cultures are started by adding 40-50 neonates per liter of medium. The stocked organisms should be transferred to new culture medium at least twice a week for two weeks. After two weeks, the culture is discarded and re-started with neonates in fresh medium. Using this schedule, 1-L cultures will produce 500 to 1000 neonate *Ceriodaphnia* each week. - 3.6.6 Reserve cultures also may be maintained in large (80-L) aquaria or other large tanks. ### 3.7 INDIVIDUAL CULTURE - 3.7.1 Individual cultures are used as the immediate source of neonates for toxicity tests. - 3.7.2 Individual organisms are cultured in 15 mL of culture medium in 30-mL (1 oz) plastic cups or 30-mL glass beakers. One neonate is placed in each cup. It is convenient to place the cups in the same type of board used for toxicity tests. - 3.7.3 Organisms are fed daily and are transferred to fresh medium a minimum of three times a week, typically on Monday, Wednesday, and Friday. On the transfer days, food is added to the new medium immediately before or after the organisms are transferred. - 3.7.4 To provide cultures of overlapping ages, new boards are started weekly, using neonates from adults which produce at least eight young in their third or fourth brood. These adults can be used as sources of neonates until 14 days of age. A minimum of two boards are maintained concurrently to provide backup supplies of organisms in case of problems. - 3.7.5 Cultures which are properly maintained should produce at least 20 young per adult in three broods (seven days or less at 25°C). Typically, 60 adult females (one board) will produce more than the minimum number of neonates (120) required for two tests. - 3.7.6 Records should be maintained on the survival of brood organisms and number of offspring at each renewal. Greater than 20% mortality of adults or less than an average of 20 young per adult on a board at 25°C during a one-week period would indicate problems, such as poor quality of culture media or food. Organisms on that board should not be used as a source of test organisms. ## 3.8 CULTURE MEDIUM 3.8.1 Moderately hard synthetic water prepared using MILLIPORE MILLI-Q® or equivalent deionized water and reagent grade chemicals or 20% DMW is recommended as a standard culture medium (see Section 7, Dilution Water). # 3.9 CULTURE CONDITIONS - 3.9.1 *Ceriodaphnia* should be cultured at the temperature at which they will be used in the toxicity tests (20°C or 25°C \pm 2°C). - 3.9.2 Day/night cycles prevailing in most laboratories will provide adequate illumination for normal growth and reproduction. A 16-h/8-h day/night cycle is recommended. - 3.9.3 Clear, double-strength safety glass or 6 mm plastic panels are placed on the culture vessels to exclude dust and dirt, and reduce evaporation. - 3.9.4 The organisms are delicate and should be handled as carefully and as little as possible so that they are not unnecessarily stressed. They are transferred with a pipet of approximately 2-mm bore, taking care to release the animals under the surface of the water. Any organism that is injured during handling should be discarded. ### 3.10 FOOD PREPARATION AND FEEDING - 3.10.1 Feeding the proper amount of the right food is extremely important in *Ceriodaphnia* culturing. The key is to provide sufficient nutrition to support normal reproduction without adding excess food which may reduce the toxicity of the test solutions, clog the animal's filtering apparatus, or greatly decrease the DO concentration and increase mortality. A combination of Yeast, CEROPHYLL®, and Trout chow (YCT) or flake food, along with the unicellular green alga, *Selenastrum capricornutum*, will provide suitable nutrition if fed daily. - 3.10.2 The YCT and algae are prepared as follows: - 3.10.2.1 Digested trout chow (or flake food): - 1. Preparation of trout chow requires one week. Use starter or No. 1 pellets prepared according to - current U.S. Fish and Wildlife Service specifications, or flake food. - 2. Add 5.0 g of trout chow pellets or flake food to 1 L of MILLI-Q® water. Mix well in a blender and pour into a 2-L separatory funnel. Digest prior to use by aerating continuously from the bottom of the vessel for one week at ambient laboratory temperature. Water lost due to evaporation is replaced during digestion. Because of the offensive odor usually produced during digestion, the vessel should be placed in a fume hood or other isolated, ventilated area. - 3. At the end of digestion period, place in a refrigerator and allow to settle for a minimum of 1 h. Filter the supernatant through a fine mesh screen (i.e., NITEX® 110 mesh). Combine with equal volumes of supernatant from CEROPHYLL® and yeast preparations (below). The supernatant can be used fresh, or frozen until use. Discard the sediment. # 3.10.2.2 Yeast: - 1. Add 5.0 g of dry yeast, such as FLEISCHMANN'S® to 1 L of MILLI-Q® water. - 2. Stir with a magnetic stirrer, shake vigorously by hand, or mix with a blender at low speed, until the yeast is well dispersed. - 3. Combine the yeast suspension immediately (do not allow to settle) with equal volumes of supernatant from the trout chow (above) and CEROPHYLL® preparations (below). Discard excess material. # 3.10.2.3 CEROPHYLL® (Dried, Powdered, Cereal Leaves): - 1. Place 5.0 g of dried, powdered, cereal leaves in a blender. Dried, powdered, alfalfa leaves obtained from health food stores have been found to be a satisfactory substitute for cereal leaves. - 2. Add 1 L of MILLI-Q® water. - 3. Mix in a blender at high speed for 5 min, or stir overnight at medium speed on a magnetic stir plate. - 4. If a blender is used to suspend the material, place in a refrigerator overnight to
settle. If a magnetic stirrer is used, allow to settle for 1 h. Decant the supernatant and combine with equal volumes of supernatant from trout chow and yeast preparations (above). Discard excess material. ## 3.10.2.4 Combined YCT Food: - 1. Mix equal (approximately 300 mL) volumes of the three foods as described above. - 2. Place aliquots of the mixture in small (50-mL to 100-mL) screw-cap plastic bottles and freeze until needed. - 3. Freshly prepared food can be used immediately, or it can be frozen until needed. Thawed food is stored in the refrigerator between feedings, and is used for a maximum of two weeks. - 4. It is advisable to measure the dry weight of solids (dry 24 h at 105°C) in each batch of YCT before use. The food should contain 1.7 1.9 g solids/L. Cultures or test solutions should contain 12-13 mg solids/L. # 3.10.3 Algal (Selenastrum) Food ## 3.10.3.1 Algal Culture Medium - 1. Prepare (five) stock nutrient solutions using reagent grade chemicals as described in Table 1. - 2. Add 1 mL of each stock solution, in the order listed in Table 1, to approximately 900 mL of MILLI-Q® water. Mix well after the addition of each solution. Dilute to 1 L and mix well. The final concentration of macronutrients and micronutrients in the culture medium is given in Table 2. TABLE 1. NUTRIENT STOCK SOLUTIONS FOR MAINTAINING ALGAL STOCK CULTURES AND TEST CONTROL CULTURES | STOCK
SOLUTION | COMPOUND | AMOUNT DISSOLVED IN 500 ML MILLI-Q® WATER | | |--------------------|--|---|--| | 1. MACRONUTRIENTS | | | | | A. | MgCl ₂ •6H ₂ O
CaCl ₂ •2H ₂ O
NaNO ₃ | 6.08 g
2.20 g
12.75 g | | | B. | $MgSO_4$ •7 H_2O | 7.35 g | | | C. | K_2HPO_4 | 0.522 g | | | D. | NaHCO ₃ | 7.50 g | | | 2. MICRONUTRIENTS: | | | | | | H ₃ BO ₃
MnCl ₂ •4H ₂ O
ZnCl ₂
FeCl ₃ •6H ₂ O
CoCl ₂ •6H ₂ O
Na ₂ MoO ₄ •2H ₂ O
CuCl ₂ •2H ₂ O
Na ₂ EDTA•2H ₂ O
Na ₂ SeO ₄ | 92.8 mg
208.0 mg
1.64 mg ^a
79.9 mg
0.714 mg ^b
3.63 mg ^c
0.006 mg ^d
150.0 mg
1.196 mg ^e | | $^{^{\}rm a}$ ZnCl $_{\rm 2}$ - Weigh out 164 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. ^bCoCl₂•6H₂O - Weigh out 71.4 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. [°]Na₂MoO₄•2H₂O - Weigh out 36.6 mg and dilute to 10 mL. Add 1 mL of this solution to Stock #2. ^dCuCl₂•2H₂O - Weigh out 60.0 mg and dilute to 1000 mL. Take 1 mL of this solution and dilute to 10 mL. Take 1 mL of the second dilution and add to Stock #2. ^eNa₂SeO₄ - Weigh out 119.6 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. TABLE 2. FINAL CONCENTRATION OF MACRONUTRIENTS AND MICRONUTRIENTS IN THE CULTURE MEDIUM | MACRONUTRIENT | CONCENTRATION
(MG/L) | ELEMENT | CONCENTRATION
(MG/L) | |--|-------------------------|---------|-------------------------| | NaNO ₃ | 25.5 | N | 4.20 | | MgCl ₂ •6H ₂ O | 12.2 | Mg | 2.90 | | CaCl ₂ •2H ₂ O | 4.41 | Ca | 1.20 | | MgSO ₄ •7H ₂ O | 14.7 | S | 1.91 | | K_2HPO_4 | 1.04 | P | 0.186 | | NaHCO ₃ | 15.0 | Na | 11.0 | | | | K | 0.469 | | | | C | 2.14 | | MICRONUTRIENT | CONCENTRATION
(μG/L) | ELEMENT | CONCENTRATION
(μG/L) | | H_3BO_3 | 185 | В | 32.5 | | MnCl ₂ •4H ₂ O | 416 | Mn | 115 | | ZnCl ₂ | 3.27 | Zn | 1.57 | | CoCl ₂ •6H ₂ O | 1.43 | Co | 0.354 | | CuCl ₂ •2H ₂ O | 0.012 | Cu | 0.004 | | Na_2MoO_4 •2 H_2O | 7.26 | Mo | 2.88 | | FeCl ₃ •6H ₂ O | 160 | Fe | 33.1 | | Na ₂ EDTA•2H ₂ O | 300 | | | | Na ₂ SeO ₄ | 2.39 | Se | 1.00 | - 3. Immediately filter the medium through a $0.45~\mu m$ pore diameter membrane at a vacuum of not more than 380 mm (15 in.) mercury, or at a pressure of not more than one-half atmosphere (8 psi). Wash the filter with 500 mL deionized water prior to use. - 4. If the filtration is carried out with sterile apparatus, filtered medium can be used immediately, and no further sterilization steps are required before the inoculation of the medium. The medium can also be sterilized by autoclaving after it is placed in the culture vessels. - 5. Unused sterile medium should not be stored more than one week prior to use, because there may be substantial loss of water by evaporation. # 3.10.3.2 Algal Cultures 3.10.3.2.1 Two types of algal cultures are maintained: (1) stock cultures, and, (2) "food" cultures. ### 3.10.3.2.2 Establishing and Maintaining Stock Cultures of Algae - 1. Upon receipt of the "starter" culture (usually about 10 mL), a stock culture is initiated by aseptically transferring one milliliter to each of several 250-mL culture flasks containing 100 mL algal culture medium (prepared as described above). The remainder of the starter culture can be held in reserve for up to six months in a refrigerator (in the dark) at 4°C. - 2. The stock cultures are used as a source of algae to initiate "food" cultures for *Ceriodaphnia* toxicity tests. The volume of stock culture maintained at any one time will depend on the amount of algal food required for the *Ceriodaphnia* cultures and tests. Stock culture volume may be rapidly "scaled up" to several liters, if necessary, using 4-L serum bottles or similar vessels, each containing 3 L of growth medium. - 3. Culture temperature is not critical. Stock cultures may be maintained in environmental chambers with cultures of other organisms if the illumination is adequate (continuous "cool-white" fluorescent lighting of approximately $86 \pm 8.6 \, \mu E/m^2/s$, or 400 ft-c). - 4. Cultures are mixed twice daily by hand or stirred continuously. - 5. Stock cultures can be held in the refrigerator until used to start "food" cultures, or can be transferred to new medium weekly. One-to-three milliliters of 7-day old algal stock culture, containing approximately 1.5 X 10⁶ cells/mL, are transferred to each 100 mL of fresh culture medium. The inoculum should provide an initial cell density of approximately 10,000-30,000 cells/mL in the new stock cultures. Aseptic techniques should be used in maintaining the stock algal cultures, and care should be exercised to avoid contamination by other microorganisms. - 6. Stock cultures should be examined microscopically weekly, at transfer, for microbial contamination. Reserve quantities of culture organisms can be maintained for 6-12 months if stored in the dark at 4°C. It is advisable to prepare new stock cultures from "starter" cultures obtained from established outside sources of organisms every four to six months. ## 3.10.3.2.3 Establishing and Maintaining "Food" Cultures of Algae - 1. "Food" cultures are started seven days prior to use for *Ceriodaphnia* cultures and tests. Approximately 20 mL of 7-day-old algal stock culture (described in the previous paragraph), containing 1.5 X 10⁶ cells/mL, are added to each liter of fresh algal culture medium (i.e., 3 L of medium in a 4-L bottle, or 18 L in a 20-L bottle). The inoculum should provide an initial cell density of approximately 30,000 cells/mL. Aseptic techniques should be used in preparing and maintaining the cultures, and care should be exercised to avoid contamination by other microorganisms. However, sterility of food cultures is not as critical as in stock cultures because the food cultures are terminated in 7-10 days. A one-month supply of algal food can be grown at one time, and the excess stored in the refrigerator. - 2. Food cultures may be maintained at 25°C in environmental chambers with the algal stock cultures or cultures of other organisms if the illumination is adequate (continuous "cool-white" fluorescent - lighting of approximately $86 \pm 8.6 \,\mu\text{E/m}^2/\text{s}$, or 400 ft-c). - 3. Cultures are mixed continuously on a magnetic stir plate (with a medium size stir bar) or in a moderately aerated separatory funnel, or are mixed twice daily by hand. If the cultures are placed on a magnetic stir plate, heat generated by the stirrer might elevate the culture temperature several degrees. Caution should be exercised to prevent the culture temperature from rising more than 2-3°C. # 3.10.3.3 Preparing Algal Concentrate for Use as Ceriodaphnia Food - 1. An algal concentrate containing 3.0 to 3.5 X 10⁷ cells/mL is prepared from food cultures by centrifuging the algae with a plankton or bucket-type centrifuge, or by allowing the cultures to settle in a refrigerator for approximately two-to-three weeks and siphoning off the supernatant. - 2. The cell density (cells/mL) in the concentrate is measured with an electronic particle counter, microscope and hemocytometer, fluorometer, or spectrophotometer, and used to determine the concentration required to achieve a final cell count of 3.0 to 3.5 X 10⁷ cells/mL. - 3. Assuming a cell density of approximately 1.5 X 10⁶ cells/mL in the algal food cultures at 7 days, and 100% recovery in the concentration process, a 3-L, 7-10 day culture will provide 4.5 X 10⁹ algal cells. This number of cells would provide approximately 150 mL of algal cell concentrate (1500 feedings at 0.1 mL/feeding) for use as food. This would be enough algal food for four *Ceriodaphnia* tests. - 4. Algal concentrate may be stored in the refrigerator for one month. #### 3.11 FEEDING - 3.11.1 Cultures should be fed daily to maintain the organisms in optimum condition so as to provide maximum reproduction. Stock cultures which are stressed because they are not adequately fed may produce low numbers of young, large number of males, and ephippial females. Also, their offspring may produce few young when used in toxicity tests. - 1. If YCT is frozen,
remove a bottle of food from the freezer 1 h before feeding time, and allow to - 2. Mass cultures are fed daily at the rate of 7 mL YCT and 7 mL algae concentrate/L culture. - 3. Individual cultures are fed at the rate of 0.1 mL YCT and 0.1 mL algae concentrate per 15 mL culture. - 4. YCT and algal concentrate should be thoroughly mixed by shaking before dispensing. - 5. Return unused YCT food mixture and algae concentrate to the refrigerator. Do not re-freeze YCT. Discard unused portion after one week. # 3.12 FOOD QUALITY 3.12.1 The quality of food prepared with newly acquired supplies of yeast, trout chow, dried cereal leaves, or algae, should be determined in side-by-side comparisons of *Ceriodaphnia* survival and reproduction, using the new food and food of known, acceptable quality, over a seven-day period in control medium. #### 4. TEST ORGANISMS 4.1 Neonates, or first instar *Ceriodaphnia* less than 24 hours old, taken from the 3rd or 4th brood, are used in toxicity tests. To obtain the necessary number of young for an acute toxicity test, it is recommended that the animals be cultured in individual 30 mL beakers or plastic cups for seven days prior to the beginning of the test. Neonates are used from broods of at least eight young. Fifty adults in individual cultures will usually supply enough neonates for one toxicity test. 4.2 Use a disposable, widemouth pipette to transfer *Ceriodaphnia*. The diameter of the opening should be approximately 4 mm. The tip of the pipette should be kept under the surface of the water when the *Ceriodaphnia* are released to prevent air from being trapped under the carapace. Liquid containing adult *Ceriodaphnia* can be poured from one container to another without risk of injuring the animals. #### SELECTED REFERENCES - Beckett, D.C., and P.A. Lewis. 1982. An efficient procedure for slide mounting of larval chironomids. Trans. Am. Microsc. Soc. 101(1):96-99. - Brandl, Z., and C.H. Fernando. 1971. Microaggregation of the cladoceran *Ceriodaphnia affinis* Lilleborg with a possible reason for microaggregation of zooplankton. Can. J. Zool. 49:775. - Cowgill, U.M., K.I. Keating, and I.T. Takahashi. 1985. Fecundity and longevity of *Ceriodaphnia dubia/affinis* in relation to diet at two different temperatures. J. Crust. Biol. 5(3):420-429. - Devaux, J. 1980. Contribution to limnological study of Lake Pavin, France. 2: Relationship between abiotic parameters, phytoplankton and zooplankton in the 0-20 meter zone. Hydrobiologia 68(1):17-34. - Fairchild, G.W. 1981. Movement and micro distribution of *Sidia crystalline* and other littoral micro Crustacea. Ecology 62(5):1341-1352. - Geller, W., and H. Mueller. 1981. The filtration apparatus of Cladocera filter mesh sizes and their implications on food selectivity. Oecologia (Berl.) 49(3):316-321. - Gophen, M. 1976. Temperature dependence of food intake, ammonia excretion, and respiration in *Ceriodaphnia reticulata*, Lake Kinneret, Israel. Freshwat. Biol. 6(5):451-455. - Kititsyna, L.A., and O.A. Sergeeva. 1976. Effect of temperature increase on the size and weight of some invertebrate populations in the cooling reservoir of the Kinakhovsk State Regional Electric Power Plant. Ekologyia 5:99-102. - Lynch, M. 1978. Complex interactions between natural coexploiters *Daphnia* and *Ceriodaphnia*. Ecology 59(3):552-564. - Lynch, M. 1979. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24(2):253-272. - McNaught, D.C., and D.I. Mount. 1985. Appropriate durations and measures for *Ceriodaphnia* toxicity tests. In: R.C. Bahner and D.J. Hansen (eds.), Aquatic Toxicology and Hazard Assessment: Eighth Symposium. ASTM STP 891, American Society for Testing and Materials, Philadelphia, PA. pp. 375-381. - Norberg, T.J., and D.I. Mount. 1985. Diets for *Ceriodaphnia reticulata* life-cycle tests. In: R.D. Cardwell, R. Purdy and R.C. Bahner (eds.), Aquatic Toxicology and Hazard Assessment: Seventh Symposium. ASTM STP 854. American Society for Testing and Materials, Philadelphia, PA. pp. 42-52. - Pal, G. 1980. Characterization of water quality regions of the Lake of Velence, Hungary with planktonic crustaceans. Allattani Kozl. 67(1-4):49-58. - Pennak, R.W. 1989. Fresh-water invertebrates of the United States. 3rd ed. Protozoa to Mollusca. John Wiley & Sons, New York, NY. - Shuba, T., and R.R. Costa. 1972. Development and growth of *Ceriodaphnia reticulata* embryos. Trans. Am. Microsc. Soc. 91(3):429-435. - Smagowicz, K. 1976. On the zooplankton of Lake Zeribar, Western Iran. Acta Hydrobiol. 18(1):89-100. - USEPA. 1986. Taxonomy of *Ceriodaphnia* (Crustacea: Cladocera) in U.S. Environmental Protection Agency cultures. D.B. Berner. U. S. Environmental Protection Agency, Environmental Monitoring and Support Laboratory, Cincinnati, OH. EPA/600/4-86/032 - USEPA. 1989. Culturing of *Ceriodaphnia dubia*. Supplemental report for video training tape. U. S. Environmental Protection Agency, Washington, D.C. EPA/505/8-89/002a. - Vigerstad, T.J., and L.J. Tilly. 1977. Hyper-thermal effluent effects on heleo planktonic Cladocera and the influence of submerged macrophytes. Hydrobiologia 55(1):81-86. - Wong, C.K. 1981. Predatory feeding behavior of *Epischura lacustris* (Copepoda: Calanoida) and prey defense. Can. J. Fish. Aquat. Sci. 38:275-279. #### APPENDIX A ## DISTRIBUTION, LIFE CYCLE, TAXONOMY, AND CULTURE METHODS # A.2. DAPHNIA (D. MAGNA AND D. PULEX) #### 1. SYSTEMATICS #### 1.1 MORPHOLOGY AND TAXONOMY - 1.1.1 The generalized anatomy of a parthenogenetic female is shown in Figure 1. *Daphnia pulex* is an extremely variable species consisting of several reproductively isolated clonal groups and is often not distinguishable from other species (such as *D. obtusa*) that have large teeth on the middle pecten of the postabdomenal claw (Figure 2C) (Lynch, 1985; Dodson, 1981). Probably the most distinctive feature of the parthenogenetic female *D. pulex* is the long second abdominal process of the abreptor (postabdomen) that extends beyond the base of the anal setae (Figure 2A). - 1.1.2 *D. pulex* is a wide ranging species that shows little variation throughout its range. Two of its most distinctive characteristics are the deeply sinuate posterior margin of the abreptor (Figures 3A and 3D) and the ridges on the head which run parallel to the mid-dorsal line (Figure 3B). - 1.1.3 *D. pulex* is much smaller than *D. magna*, attaining a length of up to 3.5 mm compared to 5.0 or 6.0 mm for *D. magna*. Although the two species can often be separated by size, they can be differentiated with certainty only by examining the postabdominal claws for size and number of spines using a compound microscope. *D. pulex* has 5-7 stout teeth on the middle pecten (Figure 2C) while *D. magna* has a uniform row of 20 or more small teeth (Figure 3E). Another characteristic for separating the neonates of the two species is the location of the nuchal organ which is higher up on the posterior margin of the head in *D. magna* than in *D. pulex* (Schwartz and Hebert, 1984). For a more complete taxonomic discussion of the two species see Brooks (1957). ## 2. DISTRIBUTION 2.1 *D. magna* has a worldwide distribution in the northern hemisphere. In North America it appears to be absent from the eastern United States (except for Northern New England) and Alaska (Figure 4). *D. pulex* occurs over most of North America except the tropics and high arctic (Figure 5), and probably occurs in Europe and South America as well. Both species often occur in the same pools but *D. pulex* usually out-competes *D. magna* in mixed populations and takes over as the sole inhabitant by summer's end (Modlin, 1982; Lynch, 1983). Figure 1. Generalized anatomy of a female *Daphnia*, X70; A, antenna; AS, anal setae; BC, brood chamber; H, heart; INT, intestine; L, legs; OV, ovary; P, postabdomen; PC, posbdominal claw. (From Pennak, 1989). Figure 2. Female *Daphnia pulex*. A, lateral aspect (note smoothly rounded posterior margin of postabdomen); B, ephippial female; C, postabdomen showing large spines on the claw. (From Brooks, 1957) Figure 3. Female *D. Magna*. A. lateral aspect; B. dorsal aspect; C. ephippial female; D. postabdomen showing sinuate posterior margin; E. postabdominal claw. (From Brooks, 1957) Figure 4. Map showing the North American distribution of *D. magna*. Figure 5. Map showing the North American distribution of *D. pulex*. ## 3. ECOLOGY AND LIFE HISTORY #### 3.1 GENERAL ECOLOGY - 3.1.1 *D. magna* is principally a lake dweller and is restricted to waters in northern and western North America exceeding a hardness of 150 mg/L (as CaCO₃) (Pennak, 1989). In the Netherlands, *D. magna* are found in shallow ponds with muddy bottoms rich in organic matter and with low oxygen demand (3 to 4 mg/L). *D. pulex* is principally a pond dweller where the oxygen content is higher, but is also found in lakes. It is generally considered a clean water species being dominant in nature during periods of low turbidity. However, Scholtz, et al. (1988) found that high turbidity had little effect on survival and reproduction in laboratory studies. - 3.1.2 *Daphnia* populations are generally sparse in winter and early spring, but as water temperatures reach 6°C to 12°C, they increase in abundance and subsequently may reach population densities as high as 200 to 500 individuals/L (Pennak, 1989). Populations in ponds decline to very low numbers during the summer months. In autumn there may be a second population pulse, followed by a decline to winter lows. - 3.1.3 During most of the year, populations of *Daphnia* consist almost entirely of females, the males being abundant only in spring or autumn when up to 56% of the offspring of *D. magna* may be males (Barker and Hebert, 1986). Males are distinguished from females by their smaller size, larger antennules, modified postabdomen, and first legs, which are armed with a stout hook used in clasping. Production of males appears to
be induced principally by low temperatures or high densities and subsequent accumulation of excretory products, and/or a decrease in available food. These conditions may induce the appearance of sexual (resting) eggs (embryos) in cases called ephippia (Figures 2B and 3C), which are cast off during the next molt. It appears that the shift toward male and sexual egg production is related to the metabolic rate of the parent. Any factor which tends to lower metabolism may be responsible. Ruvinsky et al. (1978) suggested that the genome of the animal has two developmental programs based on identical sets of chromosomes. The female program consistently functions under a wide range of conditions, whereas the male program is turned on by specific ecological stimuli. The eggs from which the males and females develop have identical chromosome sets. Sex determination is based on changes in chromatin structure when the mother receives a specific signal that sexual reproduction is needed for adaptation to extreme conditions. - 3.1.4 *D. magna* reproduce only by cyclic parthenogenesis in which males contribute to the genetic makeup of the young during the sexual stage of reproduction, whereas *D. pulex* may reproduce either by cyclic or obligate parthenogenesis in which the zygotes develop within the ephippium by ameoitic parthenogenesis with no genetic contribution from the males. Thus, the ephippial and live-born offspring are genetically identical to their mothers. Both forms may be present in the same population resulting in cyclic populations exhibiting considerable genetic variation early in the year and an obligate population with a low range of genotypic values. After 25 generations of asexual reproduction the variation in the cyclic parthenogenesis group becomes about the same as that in the obligate group (Lynch, 1984). These populations exhibiting a low range of genotypic values are much more vulnerable to perturbations such as nutrient introduction or toxic discharges. The clonal makeup of a *Daphnia* population is effected by food, oxygen, temperature and predation (Weider, 1985; Brookfield, 1984). - 3.1.5 Ephippia are small and lightweight and can be dried and stored for long periods making them easy to transport. They may be shipped in envelopes like seeds. Upon arrival at the new location the ephippia can be hatched in a few days when placed in water at the proper temperature (Schwartz and Hebert, 1987). - 3.1.6 Daphnia are preyed upon by many predators and have developed behavioral and morphological antipredator defenses to make themselves more difficult to catch and consume. Dodson (1988) showed that *D. pulex* responded to a possible chemical stimuli released by the predator which resulted in the daphnids retreating from the vicinity of the predators. Certain clones of *D. pulex* may develop morphological changes when predators are present but not when they are absent from the pond. Some of these changes are of such magnitude that they have been described as separate species. *D. minnehaha* is a morphological variation of *D. pulex* which develops spines in response to the stimuli of predators (Krueger and Dodson, 1981). Different genotypes of *D. pulex* react in different ways to the predator (*Chaoborus*) factor and to temperature (Havel, 1985). #### 3.2 FOOD AND FEEDING 3.2.1. Both *D. pulex* and *D. magna* are well adapted to live in algal blooms, which are high in proteins and carbohydrates, where they feed on algae and bacteria. *D. magna* prefers bacteria to algae as food (Ganf, 1983; Hadas et al., 1983) while *D. pulex* uses bacteria as food only when algal biomass declines (Borsheim and Olsen, 1984). Food type and abundance affect the sensitivity of *Daphnia* to pollutants and their reproduction rate. Keating and Dagbusan (1986) showed that both *D. pulex* and *D. magna* fed diatoms were more tolerant of pollutants than those fed only green algae. Lipid reserves are a good indication of the nutritional condition of the animals (Holm and Shapiro, 1984; Tessier and Goulden, 1982). #### 3.3 LIFE HISTORY - 3.3.1 Four distinct periods may be recognized in the life history of *Daphnia*: (1) egg, (2) juvenile, (3) adolescence, and (4) adult (Pennak, 1989). The life span of *Daphnia*, from the release of the egg into the brood chamber until the death of the adult, is highly variable depending on the species and environmental conditions (Pennak, 1989). Generally the life span increases as temperature decreases, due to lowered metabolic activity. The average life span of *D. magna* is about 40 days at 25°C, and about 56 days at 20°C. The average life span of *D. pulex* at 20°C is approximately 50 days. Typically, a clutch of 6 to 10 eggs is released into the brood chamber, but as many as 57 have been reported. The eggs hatch in the brood chamber and the juveniles, which are already similar in form to the adults, are released in approximately two days when the female molts (casts off her exoskeleton or carapace). The time required to reach maturity (produce their first offspring) in *D. pulex* varies from six to 10 days (mean = 7.78 days) and also appears to be dependent on body size. The growth rate of the organism is greatest during its juvenile stages (early instars), and the body size may double during each of these stages. *D. pulex* has three to four juvenile instars, whereas *D. magna* has three to five instars. Each instar stage is terminated by a molt. Growth occurs immediately after each molt while the new carapace is still elastic. - 3.3.2 Following the juvenile stages, the adolescent period is very short, and consists of a single instar. It is during the adolescent instar that the first clutch of eggs reaches full development in the ovary. Generally, eggs are deposited in the brood chamber within minutes after molting, and the young which develop are released just before the next molt. - 3.3.3 *D. magna* usually has 6-22 adult instars, and *D. pulex* has 18-25. In general, the duration of instars increases with age, but also depends on environmental conditions. A given instar generally lasts approximately two days under favorable conditions, but when conditions are unfavorable, may last as long as a week. - 3.3.4 Four events take place in a matter of a few minutes at the end of each adult instar: (1) release of young from the brood chamber to the outside, (2) molting, (3) increase in size, and (4) release of a new clutch of eggs into the brood chamber. The number of young per brood is highly variable for *Daphnia*, depending primarily on food availability and environmental conditions. *D. magna* and *D. pulex* may both produce as many as 30 young during each adult instar, but more commonly the number is six to 10. The number of young released during the adult instars of *D. pulex* reaches a maximum at the tenth instar, after which there is a gradual decrease (Anderson and Zupancic, 1937). Scholtz et al. (1988) reported that nearly all of the eggs that are oviposited by *D. pulex* became neonates, indicating a highly successful hatching rate. The maximum number of young produced by *D. magna* occurs at the fifth adult instar, after which it decreases (Anderson and Jenkins, 1942). ## 4. CULTURING METHODS #### 4.1 SOURCES OF ORGANISMS - 4.1.1 *Daphnia* are available from commercial biological supply houses. Only a small number of organisms (20-30) are needed to start a culture. *D. pulex* is preferred over *D. magna* by some biologists because it is more widely distributed, is tolerant of a wider range of environmental conditions, and is easier to culture. However, the neonates are smaller, swim faster and are more difficult to count, and produce more "floaters" than *D. magna* and, therefore, are somewhat more difficult to use in toxicity tests. Guidance on the source and species of *Daphnia* to be used by a permittee for effluent toxicity tests should be obtained from the permitting authority. - 4.1.2 Cultures of test organisms should be started at least three weeks before the brood animals are needed, to ensure an adequate supply of neonates for the test. - 4.1.3 Starter animals may be obtained from an outside source by shipping in polyethylene bottles. Approximately 20-30 animals and 3 mL of food (see below) are placed in a 1-L bottle filled full with culture water. Animals received from an outside source should be transferred to new culture media gradually over a period of 1-2 days to avoid mass mortality. - 4.1.4 It is best to start the cultures with one animal, which is sacrificed after producing young, embedded, and retained as a permanent microscope slide mount to facilitate identification and permit future reference. The species identification of the stock culture should be verified by a taxonomic authority. The following procedure is recommended for making slide mounts of *Daphnia* (Beckett and Lewis, 1982): - 1. Pipet the animal onto a watch glass. - 2. Reduce the water volume by withdrawing excess water with the pipet. - 3. Add a few drops of carbonated water (club soda or seltzer water) or 70% ethanol to relax the specimen so that the post-abdomen is extended. (Optional: with practice, extension of the postabdomen may be accomplished by putting pressure on the cover slip). - 4. Place a small amount (one to three drops) of mounting medium on a glass microscope slide. The recommended mounting medium is CMCP-9/9AF Medium, prepared by mixing two parts of CMCP-9 with one part of CMCP-9AF. For more viscosity and faster drying, CMC-10 stained with acid fuchsin may be used. - 5. Using a forceps or a pipet, transfer the animal to the drop of mounting medium on the microscope slide. - 6. Cover with a cover slip and exert minimum pressure to remove any air bubbles trapped under the cover slip. Slightly more pressure will extend the postabdomen. - 7. Allow mounting medium to dry. - 8. Make slide permanent by placing CMC-10 around the edges of the coverslip. - 9. Identify to species (see Pennak,
1989). - 10. Label with waterproof ink or diamond pencil. - 11. Store for permanent record. # 4.2 CULTURE MEDIA 4.2.1 Although *Daphnia* stock cultures can be successfully maintained in some tap waters, well waters, and surface waters, use of synthetic water as the culture medium is recommended because (1) it is easily prepared, (2) it is of known quality, (3) it yields reproducible results, and (4) allows adequate growth and reproduction. Reconstituted hard water (total hardness of 160 -180 mg/L as CaCO₃) is recommended for *D. magna* culturing, and reconstituted moderately hard water (total hardness of 80-90 mg/L CaCO₃) is recommended for *D. pulex* culturing. The quality of the dilution water is important in *Daphnia* culture. The use of MILLIPORE MILLI-Q® or SUPER-Q®, or equivalent, to prepare reconstituted water is highly recommended. The use of diluted mineral water (DMW) for culturing and testing is widespread due to the ease of preparation. 4.2.2 The chemicals used and instructions for preparation of reconstituted water are given in Section 7, Dilution Water. The compounds are dissolved in distilled or deionized water and the media are vigorously aerated for several hours before using. The initial pH of the media is between 7.0 and 8.0, but it will rise as much as 0.5 unit after the test is underway. # 4.3 CULTURE CONDITIONS 4.3.1 *Daphnia* can be cultured successfully over a wide range of temperatures, but should be protected from sudden changes in temperature, which may cause death. The optimum temperature is approximately 20°C, and if ambient laboratory temperatures remain in the range of 18-26°C, normal growth and reproduction of *Daphnia* can be maintained without special temperature control equipment. *D. magna* can survive when the DO concentration is as low as 3 mg/L but *D. pulex* does best when the DO concentration is above 5 mg/L. Therefore it is recommended that the DO concentration in the culture be maintained at 5 mg/L or above. Unless the cultures are too crowded or overfed, aeration is usually not necessary. #### 4.3.2 Illumination 4.3.2.1 The variations in ambient light intensities (10-20 μ E/m²/s, or 50-100 ft-c) and prevailing day/night cycles in most laboratories do not seem to affect *Daphnia* growth and reproduction significantly. However, a minimum of 16 h of illumination should be provided each day. #### 4.3.3 Culture Vessels - 4.3.3.1 Culture vessels of clear glass are recommended since they allow easy observation of the *Daphnia*. A practical culture vessel is an ordinary 4-L glass beaker, which can be filled with approximately 3 L medium (reconstituted water). Maintain several (at least five) culture vessels, rather than only one. This will ensure back-up cultures so that in the event of a population "crash" in one or several chambers, the entire *Daphnia* population will not be lost. If a vessel is stocked with 30 adult *Daphnia*, it will provide approximately 300 young each week. - 4.3.3.2 Initially, all culture vessels should be washed well (see Section 5, Facilities and Equipment). After the culture is established, clean each chamber weekly with distilled or deionized water and wipe with a clean sponge to rid the vessel of accumulated food and dead *Daphnia* (see section on culture maintenance below). Once per month, wash each vessel with detergent during medium replacement. Rinse three times with tap water and then with culture medium to remove all traces of detergent. # 4.3.4 Weekly Culture Media Replacement 4.3.4.1 Careful culture maintenance is essential. The medium in each stock culture vessel should be replaced three times each week with fresh medium. This is best accomplished by changing solutions Monday, Wednesday, and Friday, as follows: - 1. Place about 300 mL of the old media in a temporary holding vessel. - 2. Transfer about 25 or 30 adults from the old culture vessel to the holding vessel using a wide bore pipette. - 3. Discard the remaining *Daphnia* along with the media. - 4. Clean the culture vessel as described above. - 5. Fill the newly-cleaned vessel with fresh medium. - 6. Gently transfer (by pouring) the contents of the temporary holding vessel (old medium with the *Daphnia*) into the vessel containing the new medium making sure that none of the animals stick to the sides of the vessel. # 7. Feed the animals - 4.3.4.2 If the medium is not replaced three times weekly, waste products will accumulate, which could cause a population crash or the production of males and/or sexual eggs. - 4.3.4.3 *Daphnia* cultures should be thinned whenever the population exceeds 200 individuals per stock vessel to prevent over-crowding, which may cause a population crash, or the production of males and/or ephippia. A good time to thin the populations is on Monday, Wednesday, and Friday, before feeding. To transfer *Daphnia*, use a 15-cm disposable, jumbo bulb pipette, or 10-mL "serum" pipette which has had the delivery tip cut off and fire polished. The diameter of the opening should be approximately 5 mm. A serum pipette, a pipette bulb, such as a PROPIPETTE®, or (MOPET®) portable, motorized pipettor, will provide the controlled suction needed when selectively collecting *Daphnia*. - 4.3.4.4 Liquid containing adult *D. pulex* and *D. magna* can be poured from one container to another without risk of air becoming trapped under their carapaces. However, the very young *Daphnia* are much more susceptible to air entrapment and for this reason should be transferred from one container to another using a pipette. The tip of the pipette should be kept under the surface of the liquid when the *Daphnia* are released. - 4.3.4.5 Each culture vessel should be covered with a clear plastic sheet or glass plate to exclude dust and dirt, and minimize evaporation. #### 4.4 FOOD PREPARATION AND FEEDING - 4.4.1 Feeding the proper amount of the right food is extremely important in *Daphnia* culturing. The key is to provide sufficient nutrition to support normal reproduction without adding excess food which may reduce the toxicity of the test solutions, clog the animal's filtering apparatus, or greatly decrease the DO concentration and increase mortality. YCT, a combination of Yeast, CEROPHYLL®, and Trout chow (or flake food), along with the unicellular green alga, *Selenastrum capricornutum*, will provide suitable nutrition if fed daily. - 4.4.2 The YCT and algae are prepared as follows: - 4.4.2.1 Digested trout chow (or flake food): - 1. The preparation requires one week. Use starter or No. 1 pellets prepared according to current U.S. Fish and Wildlife Service specifications, or flake food. - 2. Add 5.0 g of trout chow pellets or flake food to 1 L of MILLI-Q® water. Mix well in a blender and pour into a 2-L separatory funnel. Digest prior to use by aerating continuously from the bottom of the vessel for one week at ambient laboratory temperature. Water lost due to evaporation is replaced during digestion. Because of the offensive odor usually produced during digestion, the vessel should be placed in a fume hood or other isolated, ventilated area. - 3. At the end of digestion period, place in a refrigerator and allow to settle for a minimum of 1 h. Filter the supernatant through a fine mesh screen (i.e., NITEX® 110 mesh). Combine with equal volumes of supernatant from CEROPHYLL® and yeast preparations (below). The supernatant can be used fresh, or frozen until use. Discard the sediment. ### 4.4.2.2 Yeast: - 1. Add 5.0 g of dry yeast, such as FLEISCHMANN'S® to 1 L of MILLI-Q® water. - 2. Stir with a magnetic stirrer, shake vigorously by hand, or mix with a blender at low speed, until the yeast is well dispersed. - 3. Combine the yeast suspension immediately (do not allow to settle) with equal volumes of supernatant from the trout chow (above) and CEROPHYLL® preparations (below). Discard excess material. # 4.4.2.3 CEROPHYLL® (Dried, Powdered, Cereal Leaves): - 1. Place 5.0 g of dried, powdered, cereal leaves in a blender. Dried, powdered, alfalfa leaves obtained from health food stores have been found to be a satisfactory substitute for cereal leaves. - 2. Add 1 L of MILLI-Q® water. - 3. Mix in a blender at high speed for 5 min, or stir overnight at medium speed on a magnetic stir plate. - 4. If a blender is used to suspend the material, place in a refrigerator overnight to settle. If a magnetic stirrer is used, allow to settle for 1 h. Decant the supernatant and combine with equal volumes of supernatant from trout chow and yeast preparations (above). Discard excess material. # 4.4.2.4 Combined YCT Food: - 1. Mix equal (approximately 300 mL) volumes of the three foods as described above. - 2. Place aliquots of the mixture in small (50-mL to 100-mL) screw-cap plastic bottles and freeze until needed. - 3. Freshly prepared food can be used immediately, or it can be frozen until needed. Thawed food is stored in the refrigerator between feedings, and is used for a maximum of one week. - 4. It is advisable to measure the dry weight of solids in each batch of YCT before use. The food should contain 1.7 1.9 g solids/L. Cultures or test solutions should contain 12-13 mg solids/L. # 4.4.3 Algal (Selenastrum) Food # 4.4.3.1 Algal Culture Medium - 1. Prepare (five) stock nutrient solutions using reagent grade chemicals as described in Table 1. - 2. Add 1 mL of each stock solution, in the order listed in Table 1, to approximately 900 mL of MILLI-Q® water. Mix well after the addition of each solution. Dilute to 1 L and mix well. The final concentration of macronutrients and micronutrients in the culture medium is given in Table 2. - 3. Immediately filter the medium through a 0.45µm pore diameter membrane at a vacuum of not more than 380 mm (15 in.) mercury, or at a pressure of not more than one-half atmosphere (8 psi). Wash the filter with 500 mL deionized water prior to use. - 4. If the filtration is carried out with sterile apparatus, filtered medium can be used immediately, and no further
sterilization steps are required before the inoculation of the medium. The medium can also be sterilized by autoclaving after it is placed in the culture vessels. - 5. Unused sterile medium should not be stored more than one week prior to use, because there may be substantial loss of water by evaporation. ### 4.4.3.2 Algal Cultures 4.4.3.2.1 Two types of algal cultures are maintained: (1) stock cultures, and, (2) "food" cultures. # 4.4.3.2.2 Establishing and Maintaining Stock Cultures of Algae - 1. Upon receipt of the "starter" culture (usually about 10 mL), a stock culture is initiated by aseptically transferring one milliliter to each of several 250-mL culture flasks containing 100 mL algal culture medium (prepared as described above). The remainder of the starter culture can be held in reserve for up to six months in a refrigerator (in the dark) at 4°C. - 2. The stock cultures are used as a source of algae to initiate "food" cultures for *Daphnia* toxicity tests. The volume of stock culture maintained at any one time will depend on the amount of algal food required for the *Daphnia* cultures and tests. Stock culture volume may be rapidly "scaled up" to - several liters, if necessary, using 4-L serum bottles or similar vessels, each containing 3 L of growth medium. - 3. Culture temperature is not critical. Stock cultures may be maintained in environmental chambers with cultures of other organisms if the illumination is adequate (continuous "cool-white" fluorescent lighting of approximately $86 \pm 8.6 \, \mu\text{E/m}^2/\text{s}$, or 400 ft-c). - 4. Cultures are mixed twice daily by hand or stirred continuously. - 5. Stock cultures can be held in the refrigerator until used to start "food" cultures, or can be transferred to new medium weekly. One-to-three milliliters of 7-day old algal stock culture, containing approximately 1.5 X 10⁶ cells/mL, are transferred to each 100 mL of fresh culture medium. The inoculum should provide an initial cell density of approximately 1,000-30,000 cells/mL in the new stock cultures. Aseptic techniques should be used in maintaining the stock algal cultures, and care should be exercised to avoid contamination by other microorganisms. - 6. Stock cultures should be examined microscopically weekly, at transfer, for microbial contamination. Reserve quantities of culture organisms can be maintained for 6-12 months if stored in the dark at 4°C. It is advisable to prepare new stock cultures from "starter" cultures obtained from established outside sources of organisms every four to six months. TABLE 1. NUTRIENT STOCK SOLUTIONS FOR MAINTAINING ALGAL STOCK CULTURES AND TEST CONTROL CULTURES | STOCK
SOLUTION | COMPOUND | AMOUNT DISSOLVED IN
500 ML MILLI-Q® WATER | |--------------------|--|---| | 1. MACRONUTRIENTS | | 500 ME MIEDI Q WITTER | | A. | MgCl ₂ •6H ₂ O
CaCl ₂ •2H ₂ O
NaNO ₃ | 6.08 g
2.20 g
12.75 g | | B. | $MgSO_4$ • $7H_2O$ | 7.35 g | | C. | K_2HPO_4 | 0.522 g | | D. | NaHCO ₃ | 7.50 g | | 2. MICRONUTRIENTS: | | | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ FeCl ₃ •6H ₂ O CoCl ₂ •6H ₂ O Na ₂ MoO ₄ •2H ₂ O CuCl ₂ •2H ₂ O Na ₂ EDTA•2H ₂ O Na ₂ SeO ₄ | 92.8 mg 208.0 mg 1.64 mg ^a 79.9 mg 0.714 mg ^b 3.63 mg ^c 0.006 mg ^d 150.0 mg 1.196 mg ^e | ^aZnCl₂ - Weigh out 164 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. d CuCl₂•2H₂O - Weigh out 60.0 mg and dilute to 1000 mL. Take 1 mL of this solution and dilute to 10 mL. Take 1 mL of the second dilution and add to Stock #2. ^bCoCl₂•6H₂O - Weigh out 71.4 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. ^cNa₂MoO₄•2H₂O - Weigh out 36.6 mg and dilute to 10 mL. Add 1 mL of this solution to Stock #2. ^eNa₂SeO₄ - Weigh out 119.6 mg and dilute to 100 mL. Add 1 mL of this solution to Stock #2. TABLE 2. FINAL CONCENTRATION OF MACRONUTRIENTS AND MICRONUTRIENTS IN THE CULTURE MEDIUM | MACRO
NUTRIENT | CONCENTRATION (MG/L) | ELEMENT | CONCENTRATION (MG/L) | | |---|--|----------------------|---|--| | NaNO ₃ | 25.5 | N | 4.20 | | | MgCl ₂ •6H ₂ O | 12.2 | Mg | 2.90 | | | CaCl ₂ •2H ₂ O | 4.41 | Ca | 1.20 | | | $MgSO_4$ • $7H_2O$ | 14.7 | S | 1.91 | | | K_2HPO_4 | 1.04 | P | 0.186 | | | NaHCO ₃ | 15.0 | Na | 11.0 | | | | | K | 0.469 | | | | | С | 2.14 | | | MICRO
NUTRIENT | CONCENTRATION | ELEMENT | CONCENTRATION | | | | $(\mu G/L)$ | | $(\mu G/L)$ | | | H_3BO_3 | (μG/L)
185 | В | (μG/L)
32.5 | | | | | B
Mn | | | | H_3BO_3 | 185 | | 32.5 | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O | 185
416 | Mn | 32.5
115 | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ | 185
416
3.27 | Mn
Zn | 32.5
115
1.57 | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ CoCl ₂ •6H ₂ O | 185
416
3.27
1.43 | Mn
Zn
Co | 32.5
115
1.57
0.354 | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ CoCl ₂ •6H ₂ O CuCl ₂ •2H ₂ O | 185
416
3.27
1.43
0.012 | Mn
Zn
Co
Cu | 32.5
115
1.57
0.354
0.004 | | | H ₃ BO ₃ MnCl ₂ •4H ₂ O ZnCl ₂ CoCl ₂ •6H ₂ O CuCl ₂ •2H ₂ O Na ₂ MoO ₄ •2H ₂ O | 185
416
3.27
1.43
0.012
7.26
160 | Mn Zn Co Cu Mo | 32.5
115
1.57
0.354
0.004
2.88 | | Se 1.00 2.39 Na₂SeO₄ # 4.4.3.2.3 Establishing and Maintaining "Food" Cultures of Algae - 1. "Food" cultures are started seven days prior to use for *Daphnia* cultures and tests. Approximately 20 mL of 7-day-old algal stock culture (described in the previous paragraph), containing 1.5 X 10⁶ cells/mL, are added to each liter of fresh algal culture medium (i.e., 3 L of medium in a 4-L bottle, or 18 L in a 20-L bottle). The inoculum should provide an initial cell density of approximately 30,000 cells/mL. Aseptic techniques should be used in preparing and maintaining the cultures, and care should be exercised to avoid contamination by other microorganisms. However, sterility of food cultures is not as critical as in stock cultures because the food cultures are terminated in 7-10 days. A one-month supply of algal food can be grown at one time, and the excess stored in the refrigerator. - 2. Food cultures may be maintained at 25°C in environmental chambers with the algal stock cultures or cultures of other organisms if the illumination is adequate (continuous "cool-white" fluorescent lighting of approximately $86 \pm 8.6 \, \mu \text{E/m}^2/\text{s}$, or 400 ft-c). - 3. Cultures are mixed continuously on a magnetic stir plate (with a medium size stir bar) or in a moderately aerated separatory funnel, or are mixed twice daily by hand. If the cultures are placed on a magnetic stir plate, heat generated by the stirrer might elevate the culture temperature several degrees. Caution should be exercised to prevent the culture temperature from rising more than 2-3°C. # 4.4.3.3 Preparing Algal Concentrate for Use as *Daphnia* Food - 1. An algal concentrate containing 3.0 to 3.5 X 10⁷ cells/mL is prepared from food cultures by centrifuging the algae with a plankton or bucket-type centrifuge, or by allowing the cultures to settle in a refrigerator for approximately two-to-three weeks and siphoning off the supernatant. - 2. The cell density (cells/mL) in the concentrate is measured with an electronic particle counter, microscope and hemocytometer, fluorometer, or spectrophotometer, and used to determine the concentration required to achieve a final cell count of 3.0 to 3.5 X 10⁷/mL. - 3. Assuming a cell density of approximately 1.5 X 10⁶ cells/mL in the algal food cultures at 7 days, and 100% recovery in the concentration process, a 3-L, 7-10 day culture will provide 4.5 X 10⁹ algal cells. This number of cells would provide approximately 150 mL of algal cell concentrate. - 4. Algal concentrate may be stored in the refrigerator for one month. ### 4.5 FEEDING - 4.5.1 Feeding rate and frequency are important in maintaining the organisms in optimal condition so that they achieve maximum reproduction. Stock cultures which are stressed because they are not adequately fed may produce low numbers of young, large numbers of males, and ephippial females. When the young taken from these inadequately fed *Daphnia* cultures are used in toxicity tests, they may show higher than acceptable mortality in controls and greater than normal sensitivity to toxicants. Steps to follow when feeding the YCT and algal diet are as follows: - 1. If YCT is frozen, remove a bottle of the food from the freezer at least 1 h before feeding time, and allow to thaw. - 2. Mass cultures are fed Monday, Wednesday, and Friday at the rate of 4.5 mL YCT and 2 mL of algae concentrate per 3-L culture. - 3. On Tuesday and Thursday the culture water is stirred to re-suspend the settled algae and another 2 mL of algal concentrate is added. - 4. The YCT and algal concentrate is thoroughly mixed by shaking before dispensing. - 5. Return unused YCT food mixture and algal concentrate to the refrigerator. Do not re-freeze the YCT. Discard unused portion of YCT after one week. 153 | 2.5.2 The quality of food prepared with newly acquired supplies of yeast, trout chow, and dried cereal leaves, or algae, should be determined in side-by-side comparisons of <i>Daphnia</i> survival and reproduction tests, using the new food and food of known, acceptable quality, over a seven-day period in control medium. | | ne, should be determined
in side-by-side comparisons of Daphnia survival and reproduction tests, using the new | | |---|--|--|--| #### SELECTED REFERENCES - Adema, D.M.M. 1978. *Daphnia magna* as a test animal in acute and chronic toxicity tests. Hydrobiologia 59(2):125-134. - Alibone, M.R. and P. Fair. 1981. The effects of low pH on the respiration of *Daphnia magna* Straus. Hydrobiologia 85:185-188. - Anderson, B.G. and J.C. Jenkins. 1942. A time study of the events in the life span of *Daphnia pulex*. Biol. Bull. 83:260-272. - Anderson, B.G. and L.J. Zupancic, Jr. 1937. Growth and variability in Daphnia pulex. Biol. Bull. 73:444-463. - Barker, D.M. and P.D.N. Hebert. 1986. Secondary sex ratio of the cyclic parthenogen *Daphnia magna* (Crustacea: Cladocera) in the Canadian arctic. Can. J. Zool. 64:1137-1143. - Beckett, D.C., and P.A. Lewis, 1982. An efficient procedure for slide mounting of larval chironomids. Trans. Am. Microsc. Soc. 101(1):96-99. - Berge, W.F. Ten. 1978. Breeding *Daphnia magna*. Hydrobiologia 59(2):121-123. - Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals on survival, growth, reproduction, and metabolism of *Daphnia magna*. J. Fish. Res. Bd. Can. 29:1691-1700. - Borsheim, K.Y. and Y. Olsen. 1984. Grazing activities by *Daphnia pulex* on natural populations of bacteria and algae. Verh. Internat. Verein. Limnol. 22:644-648. - Brookfield, J.F.Y. 1984. Measurement of the intraspecific variation in population growth rate under controlled conditions in the clonal parthenogen *Daphnia magna*. Genetica 63:161-174. - Brooks, J.L. 1957. The systematics of North American Daphnia. Mem. Conn. Acad. Arts Sci. 13:1-180. - Buikema, A.L., Jr., J.G. Geiger and D.R. Lee. 1980. *Daphnia* toxicity tests. In: A.L. Buikema, Jr., and John Cairns, Jr. (eds.), Aquatic Invertebrate Bioassays. ASTM STP 715, American Society for Testing and Materials, Philadelphia, Pennsylvania. pp. 48-69. - Buikema, A.L., Jr., D.R. Lee and J. Cairns, Jr. 1976. A screening bioassay using *Daphnia pulex* for refinery wastes discharged into freshwater. J. Testing Eval. 4(2):119-125. - Canton, J.H. and D.M.M. Adema. 1978. Reproducibility of short-term and reproduction toxicity experiments with *Daphnia magna* and comparison of the sensitivity of *Daphnia magna* with *Daphnia pulex* and *Daphnia cucullata* in short-term experiments. Hydrobiologia 59(2):135-140. - Carvalho, G.R. and R.N. Hughes. 1983. The effect of food availability, female culture-density and photoperiod on ephippia production in *Daphnia magna* Straus (Crustacea: Cladocera). Freshw. Biol. 13:37-46. - Davis, P. and G.W. Ozburn. 1969. The pH tolerance of *Daphnia pulex*. (Leydig, emend., Richard). Can. J. Zool. 47:1173-1175. - Dodson, S.I. 1981. Morphological variation of *Daphnia pulex* Leydig (Crustacea: Cladocera) and related species from North America. Hydrobiologia 83:101-114. - Dodson, S.I. 1984. Predation of *Heterocope septentrionalis* on two species of *Daphnia*: Morphological defenses and their cost. Ecology 65(4):1249-1257. - Dodson, S.I. 1988. The ecological role of chemical stimuli for the zooplankton: Predation-avoidance behavior in *Daphnia*. Limnol. Oceanogr. 33(6,part 2):1431-1439. - Doma, S. 1979. Ephippia of *Daphnia magna* Straus A technique for their mass production and quick revival. Hydrobiologia 67(2):183-188. - France, R.L. 1982. Comment on *Daphnia* respiration in low pH water. Hydrobiologia 94:195-198. - Ganf, G.G. 1983. An ecological relationship between *Aphanizomenon* and *Daphnia pulex*. Aust. J. Mar. Freshwat. Res. 34:755-773. - Geiger, J.G., A.L. Buikema, Jr. and J. Cairns, Jr. 1980. A tentative seven-day test for predicting effects of stress on populations of *Daphnia pulex*. In: J.G. Eaton, P.R. Parrish, and A.C. Hendricks (eds.), ASTM STP 707, American Society for Testing and Materials, Philadelphia, Pennsylvania. pp. 13-26. - Gophen, M. and B. Gold. 1981. The use of inorganic substances to stimulate gut evacuation in *Daphnia magna*. Hydrobiologia 80:43-45. - Gulati, R.D. 1978. The ecology of common planktonic Crustacea of the freshwaters in the Netherlands. Hydrobiologia 59(2):101-112. - Hadas, O., U. Bachrach, Y. Kott and B.Z. Cavari. 1983. Assimilation of *E. coli* cells by *Daphnia magna* on the whole organism level. Hydrobiologia 102:163-169. - Havas, M. 1981. Physiological response of aquatic animals to low pH. In: R. Singer (ed.), Effects of Acidic Precipitation on Benthos. North American Benthological Society, Box 878, Springfield, Illinois 62705). pp. 49-65. - Havel, J.E. 1985. Cyclomorphosis of *Daphnia pulex* spined morphs. Limnol. Oceanogr. 30(4):853-861. - Holm, N.P. and J. Shapiro. 1984. An examination of lipid reserves and the nutritional status of *Daphnia pulex* fed *Aphanizomenon flos-aquae*. Limnol. Oceanogr. 29(5):1137-1140. - How, M. J. 1980. The application and conduct of ring tests in aquatic toxicology. Water Res. 14:293-296. - Ingersoll, C.G. and R.W. Winner. 1982. Effect on *Daphnia pulex* (De Geer) of daily pulse exposure to copper or cadmium. Environ. Toxicol. Chem. 1:321-327. - Keating, K.I. and B.C. Dagbusan. 1986. Diatoms in daphnid culture and bioassay. Environ. Toxicol. Chem. 5:299-307. - Krueger D.A. and S.I. Dodson. 1981. Embryological induction and predation ecology in *Daphnia pulex*. Limnol. Oceanogr. 26(2):219-223. - LeBlanc, G.A. 1982. Laboratory investigation into the development of resistance of *Daphnia magna* (Straus) to environmental pollutants. Environ. Pollut. (Ser. A) 27:309-322. - Lee, D.R. and A.L. Buikema, Jr. 1979. Molt-Related sensitivity of *Daphnia pulex* in toxicity testing. J. Fish. Res. Bd. Can. 36:1129-1133. - Leonhard, S.L. and S.C. Lawrence. 1981. *Daphnia magna* (Straus), *Daphnia pulex* (Leydig) Richard. In: S. G. Lawrence, ed., Manual for the Culture of Selected Freshwater Invertebrates, Can. Spec. Publ. Fish. Aquat. Sci. 54:31-50. - Lewis, P.A. and C.I. Weber. 1985. A study of the reliability of *Daphnia* acute toxicity tests. In: R.D. Cardwell, R. Purdy and R.C. Bahner (eds.), Aquatic Toxicology and Hazard Assessment: Seventh Symposium. ASTM STP 854, American Society for Testing and Materials, Philadelphia, Pennsylvania. pp. 73-86. - Lynch, M. 1983. Ecological genetics of *Daphnia pulex*. Evolution 37(2): 358-374. - Lynch, M. 1984. The limits to life-history evolution in *Daphnia*. Evolution 38(3):465-482. - Lynch, M. 1985. Speciation in the Cladocera. Verh. Internat. Verein. Limnol. 22:3116-3123. - Modlin, R.F. 1982. Successional changes, variations in population densities, and reproductive strategies of Cladocera in two temporary ponds in north Alabama. J. Freshwat. Ecol. 1(6):589-598. - Nebeker, A. V. 1982. Evaluation of a *Daphnia magna* renewal life-cycle test method with silver and endosulfan. Water Res. 16:739-744. - Parent, S. and R.D. Cheetham. 1980. Effects of acid precipitation on *Daphnia magna*. Bull. Environ. Contam. Toxicol. 25:298-304. - Pennak, R.W. 1989. Fresh-water invertebrates of the United States. 3rd ed. Protozoa to Mollusca. John Wiley & Sons, New York, NY. - Pucke, S.C. 1981. Development and standardization of *Daphnia* culturing and bioassays. M.S. Thesis, University of Cincinnati. - Ruvinsky, A.O., S.F. Cellarius, and Yu. G. Cellarius. 1978. The possible role of genome activity changes in the sex determination of *Daphnia pulex*. Theor. Appl. Genet. 52:269-271. - Scholtz, S., M.T. Seaman and A.J.H. Pieterse. 1988. Effects of turbidity on life history parameters of two species of *Daphnia*. Freshwat. Biol. 20:177-184. - Schultz, T.W., S.R. Freeman and N.N. Dumont. 1980. Uptake, depuration and distribution of selenium in *Daphnia* and its effects on survival and ultrastructure. Arch. Environ. Contam. Toxicol. 9:23-40. - Schwartz, S.S. and P.D.N. Hebert. 1984. Subgeneric distinction in the genus *Daphnia*: A new diagnostic trait. Trans. Am. Microsc. Soc. 103(4):341-346. - Schwartz, S.S. and P.D.N. Hebert. 1987. Methods for the activation of the resting eggs of *Daphnia*. Freshwat. Biol. 17:373-379. - Tessier, A.J. and C.E. Goulden. 1982. Estimating food limitation in cladoceran populations. Limnol. Oceanogr. 27(4):707-717. - USEPA. 1977. Chemical/biological implications of using chlorine and ozone for disinfection. R.M. Carlson, and R. Caple. Environmental Research Laboratory, U.S. Environmental Protection Agency, Duluth, Minnesota. 55804. EPA-600/3-77-066. 87 pp. - USEPA. 1978a. The Selenastrum capricornutum Printz, algal assay bottle test. W.E. Miller, J.C. Greene and T. - Shiroyama. Environmental Research Laboratory, U. S. Environmental Protection Agency, Corvallis, Oregon. EPA-600/9-78-018. 126 pp. - USEPA. 1978b. Methods for measuring the acute toxicity of effluents to aquatic organisms. 2nd ed. W.H. Peltier. Environmental Monitoring and Support Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-600/4-78-012. - USEPA. 1981. Effluent toxicity screening test using *Daphnia* and mysid shrimp. Weber, C.I., and W.H. Peltier. Environmental Monitoring and Support Laboratory, U. S. Environmental Protection Agency, Cincinnati, Ohio. - Vijverberg, J. 1989. Culture techniques for studies on the growth, development and reproduction of copepods and cladocerans under laboratory and *in situ* conditions: a review. Freshw. Biol. 21:317-373. - Walton, W.E., S.M. Compton, J.D. Allan and R.E. Daniels. 1982. The effect of acid stress on survivorship and reproduction of *Daphnia pulex* (Crustacea:
Cladocera). Can. J. Zool. 60:573-579. - Weider, L.J. 1985. Spatial and temporal genetic heterogeneity in a natural *Daphnia* population. J. Plankton Res. 7(1):101-123. - Winner, R.W. 1984. Selenium effects on antennal integrity and chronic copper toxicity in *Daphnia pulex* (deGreer). Bull. Environ. Contam. Toxicol. 33:605-611. - Winner, R.W., T. Keeling, R. Yeager and M.P. Farrell. 1977. Effect of food type on the acute and chronic toxicity of copper to *Daphnia magna*. Freshw. Biol. 7:343-349. #### APPENDIX A ## DISTRIBUTION, LIFE CYCLE, TAXONOMY, AND CULTURE METHODS # A.3. MYSIDS (MYSIDOPSIS BAHIA AND HOLMESIMYSIS COSTATA) #### 1. **DISTRIBUTION** - 1.1 Mysids (Figure 1) are small shrimp-like crustaceans found in both the marine and freshwater environments. The mysid(s) that currently are of primary interest in the NPDES program are the estuarine species, *Mysidopsis bahia* (now identified as *Americamysis bahia*; Price *et al.*, 1994) and the marine species, *Holmesimysis costata*. It occurs primarily at salinities above 15%; Stuck et al. (1979a) and Price (1982) found greatest abundances at salinities near 30%. Three sympatric species of *Mysidopsis*, *M. almyra*, *M. bahia*, and *M. bigelowi*, have been cultured and used in toxicity testing. The distribution of *Mysidopsis* species has been reported by Stuck et al. (1979b), Price (1982), and Heard et al. (1987). - 1.2 *M. bahia* occurs primarily at salinities above 15‰; Stuck *et al.* (1979a) and Price (1982) found greatest abundances at salinities near 30‰. Three sympatric species of *Mysidopsis*, *M. almyra*, *M. bahia*, and *M. bigelowi*, have been cultured and used in toxicity testing. The distribution of *Mysidopsis* species has been reported by Stuck *et al.* (1979b), Price (1982), and Heard *et al.* (1987). - 1.3 *H. costata* (Holmes 1900; previously referred to as *Acanthomysis sculpta*) is a west coast species that lives in the surface canopy of the giant kelp *Macrocystis pyrifera* where it feeds on zooplankters, kelp, epiphytes, and detritus. There are few references to the ecology of this mysid species (Holmquist, 1979; Clutter, 1967, 1969; Green, 1970; Turpen *et al.*, 1994). *H. costata* is numerically abundant in kelp forest habitats and is considered to be an important food source for kelp forest fish (Clark 1971, Mauchline 1980). *H. costata* eggs develop for about 20 days in their marsupium (abdominal pouch) before the young are released as juveniles; broods are released at night during molting. Females release their first brood at 55 to 70 days post-release (at 12°C), and may have multiple broods throughout their approximately 120-day life. - 1.4 Other marine mysids that have been used in toxicity testing and held or cultured in the lab include *Metamysidopsis elongata*, *Neomysis americana*, *Neomysis awatschensis*, *Neomysis intermedia*, and recently for the Pacific coast, *Holmesimysis sculpta* and *Neomysis mercedis*. A freshwater species, *Mysis relicta*, presently not used in toxicity testing, but found in the same habitat as *Daphnia pulex*, might be considered in the future for toxicity testing. ## 2. MYSIDOPSIS BAHIA #### 2.1 LIFE CYCLE - 2.1.1 In laboratory culture, *Mysidopsis bahia* reach sexual maturity in 12 to 20 days, depending on water temperature and diet (Nimmo et al., 1977). Normally, the female will have eggs in the ovary at approximately 12 days of age. The lamellae of the marsupium pouch have formed or are in the process of forming when the female is approximately 4 mm in length (Ward, 1993). Unlike *Daphnia*, the eggs will not develop unless fertilized. Mating takes place at night and lasts only a few minutes (Mauchline, 1980). - 2.1.2 Brood pouches are normally fully formed at approximately 15 days (approximately 5 mm in body length), and young are released in 17 to 20 days (Ward, 1993). The number of eggs deposited in the brood and the number of young produced per brood are a direct function of body length as well as environmental conditions. Mature females have produced as many as 25 Stage I larvae (egg-shaped embryo) per brood (8-9 mm in body length) in natural and artificial seawater (FORTY FATHOMS®) but average 11 ± 6 Stage III larvae (final stage before larvae are released), with increasing numbers correlated with increasing body length (Ward, 1993). A new brood is produced every 4 to 7 days. 2.1.3 At time of emergence, juveniles are immobile, making them susceptible to predation by adult mysids. The juveniles are planktonic for the first 24-48 hours and then settle to the bottom, orient to the current, and actively pursue food organisms such as *Artemia*. Carr et al. (1980) reported that the stage in the life cycle of *M. almyra* most sensitive to drilling mud was the juvenile molt, which occurs between 24 and 48 hours after release from the brood pouch. Ward (1989) found a relationship between CaCO₃ level and growth and reproduction and that *M. bahia* were more sensitive to cadmium during molting (24-72 h post release) in high or low levels of CaCO₃. Work done by Lee and Buikema (1979) for *Daphnia pulex* also showed increased sensitivity during molting. Figure 1. Lateral and dorsal view of a mysid with morphological features identified (From Stuck et al., 1979a). Figure 2. Morphological features most useful in identifying *Mysidopsis bahia*. a. male; b. female; c. thoracic leg 2; d. telson; e. right uropod, dorsal; f. male, dorsal (redrawn from Molenock, 1969; Heard et al., 1987). Note gonad in area where marsupium is located on female and length of male pleopods as compared to female. Also note the 3 spines on the endopod of the uropod (e). GENUS *MYSIDOPSIS*: COMMON AND SPECIFIC CHARACTERS OF SPECIES KNOWN FROM U.S. ALTANTIC AND GULF OF MEXICO WATERS (HEARD, ET AL., 1987 AND MODIFIED IN PART FROM BRATTEGARD, 1969) TABLE 1. | | M.
Eclipes | M.
Brattstroemi | M.
Mortenseni | M.
Furca | M.
Almyra | M.
Bahia | M.
Bigelowi | M. sp.
(Inshore) | M. sp.
(Offshore) | |--|----------------------------|--------------------|--------------------|--------------------|-------------------------|-------------------------|---------------------|------------------------|----------------------| | Anterior dorsal margin of carapace | Triangular | Triangular | Triangular | Rounded | Rounded | Triangular | Triangular | Triangular | Triangular | | Presence of distal segment on antennal | yes | yes | yes | yes | no | no | no | no | no | | Length/breadth ratio
of antennal scale | 2-2.5 | 3-3.5 | 3.5-4 | 4 | 9 | 9 | 5.4 | 5.4 | 5.2 | | # segments in
carpoporpodus of
thoracic endopods 3-8 | 8 | ю | 3 (2 in juv.) | 3 | 2 | 2 | 71 | 2 | 7 | | # segments in exopod
of male pleopod 4 | ċ | 9 | 2-9 | 7 | 7 | 7 | 7-8 | 7 | 7 | | # spines on uropodal endopod | 6-8 | 10-20 | 18-31 | 20-40 | | 1-4 | 5
(occ. 3-4) | 3-4
(occ.2 or 5) | 5
(occ. 4) | | Length of terminal
pair(s) of telson spines
relative to lateral
margin spines | Almost
twice as
long | slightly
longer | Slightly
longer | > twice
as long | Gradually
increasing | Gradually
increasing | Abruptly increasing | Abruptly
increasing | Abruptly increasing | | # of pairs of apical
telson spines | - | - | - | 7 | 4-8 | 3-6 | 8 | 3-4 | 3 | | # setae on inner
margin of segment 6
of second thoracic
endopod | ca 3 | ca 4 | ca 3 | ca 3 | 2-3 | 2-3 | 6-12 | 6-12 | 6-12 | | # setae on inner
margin of segment 5
of second thoracic
endopod | ca 5 | ca 4 | ca 2 | ca 3 | 7-18 | 7-18 | 7 | 2 | 5-7 | # 2.2 MORPHOLOGY AND TAXONOMY - 2.2.1 Since *Mysidopsis bahia* occur with two other species of *Mysidopsis*, an understanding of the taxonomy of *M. almyra*, *M. bahia*, and *M. bigelowi* is important for culturing and testing practices. The taxonomic key of Heard et al. (1987) is suggested (see Table 1 for morphological guide to *Mysidopsis*). - 2.2.2 Adults of *M. bahia* range in length from 4.4 mm to 9.4 mm (Molenock, 1969), measured from the anterior margin of the carapace to the end of uropods. The mature females are normally larger than the males and the pleopods of the female are smaller than those of the male (Ward, 1993) (Figure 2). *Mysidopsis bahia* can be positively identified as male or female when they are 4 mm in body length (Ward, 1993). Living organisms are usually transparent, but may be tinted yellow, brown or black. *Mysidopsis bigelowi* can be readily distinguished from *M. almyra* and *M. bahia* by the morphology of the second thoracic leg. *Mysidopsis bigelowi* has a greatly enlarged endopod of the thoracic limb 2 ("first leg") and the limb has a distinctive row of 6 to 12 spiniform setae on the inner margin of the sixth segment (Heard et al., 1987). *Mysidopsis bahia* can also be distinguished from other species of *Mysidopsis* by the number of apical spines on the telson (4-5 pairs) and the number of spines on the inner uropods distal to the statocyst (normally 2-3) (Figure 2). - 2.2.3 Heard et al. (1987) state that the most reliable character for separating adult *M. almyra* and *M. bahia* is the number of spines on the inner uropods (*M. almyra* will always have a single spine). Further, Price (1982) found that for all stages of development for both species, the shape of the anterior margin of the carapace (rostral plate) could be used to distinguish *M. almyra* (broadly rounded) from *M. bahia* (more produced). Figure 2 illustrates the morphological features most useful in identifying *M. bahia* (redrawn Molenock, 1969; Heard et al., 1987). ## 2.3 CULTURE METHODS #### 2.3.1 SOURCE OF ORGANISMS - 2.3.1.1 Starter cultures of mysids can be obtained from commercial sources, particularly in the Gulf of Mexico region for *M. almyra* and *M. bahia*. - 2.3.1.2 Mysids of different species can also be collected by plankton tows or dip nets (approximately 1.0 mm mesh size) in estuarine systems.
Heard et al. (1987) have identified specimens of *M. bahia* along the eastern coast, however, it has been principally identified as a subtropical species found in the Gulf of Mexico and along the east coast of Florida. Since many species of mysids may be present at a given collection site, the identification of the organisms selected for culture should be verified by an experienced taxonomist. The permittee should consult the permitting authority for guidance on the source of test organisms (indigenous or laboratory reared) before use. ## 2.4 CULTURING SYSTEM - 2.4.1 Stock cultures can be maintained in continuous-flow or closed recirculating systems. In laboratory culture of *M. bahia*, recirculating systems are probably the most common practice. During the past ten years, a number of closed recirculating systems have been described. Since no single recirculating technique is the best in all respects, the system adopted will depend on the facilities and equipment available and the objectives of the culturing activities. Two other species of mysid, *M. almyra* and *M. bigelowi*, have also been successfully reared in the system described in this section (Ward, 1991). Further, there now exist a number of review papers (Venables, 1987 and Lussier et al., 1988) that describe in detail techniques developed by others that will be very helpful in culturing *Mysidopsis*. - 2.4.2 Closed recirculating systems are unique because the re-used seawater they contain develops an unusual set of characteristics caused primarily by metabolic waste produced by the mysids. The accumulation of waste products and suspended particles in the water column is prevented by passing the seawater through a biological filtration system, in which ammonia and nitrite are oxidized by nitrifying bacteria. # 2.5 CULTURE TANKS - 2.5.1 Stock cultures of mysids are maintained in a closed recirculating system. The system should consist of four 200-L glass aquaria. However, smaller tanks, such as 80-L glass aquaria, can be used. When setting up a system, it is important to consider surface to volume ratio since this will determine how many mysids can be held in each aquarium. If smaller tanks must be used, the 20-gallon "high" form is recommended. Figure 3 (Ward, 1984; 1991) illustrates the main components of the biological filtration system. The flow rate through the filter is controlled by the water valve and is maintained between 4-5 L/min. This flow will be sufficient to establish a moderate current (from the filter return line) in the aquarium to allow the mysids (which are positively rheotactic) to align themselves with the current formed. - 2.5.2 The filtration system consists of commercially-available under-gravel filter plates and external power filter. Each aquarium has two filter plates, forming a false bottom on each side of the tank, on which 2 cm of crushed coral are placed. The external power filter (Eheim, model 2017) canister is layered as shown in Figure 3 with a thin layer of filter fiber between each layer of carbon and crushed oyster shells. There has been some modification of the original filtration system (Ward, 1984), with crushed coral instead of oyster shells used on the filter bed, because crushed coral does not dissolve in seawater as readily as crushed oyster shells. If the system described above cannot be used, an acceptable alternative is an airlift pumping arrangement (Spotte, 1979). Crushed coral and oyster shells are commercially available and should be washed with deionized water and autoclaved before use. ### 2.6 CULTURE MEDIA - 2.6.1 A clean source of filtered natural seawater (0.45 μm pore diameter) should be used to culture *Mysidopsis bahia*, however, artificial seasalts (FORTY FATHOMS®) have also been successfully used (Ward, 1993). A salinity range between 20 and 30% can be used (25% is suggested) to culture *M. bahia*. Leger and Sorgeloos (1982) reported success in culturing *M. bahia* in a formula following Dietrich and Kalle (Kalle, 1971), and still report continued use of this formula (Leger et al., 1987b). Other commercial brands have also been used (Reitsema and Neff, 1980; Nimmo and Iley, 1982; Nimmo et al., 1988) with varying degrees of success. The culture methods presented in Ward (1984; 1991) have been tried with a number of commercial brands of artificial seawater listed in Bidwell and Spotte (1985). Commercial brands of seasalts can be extremely variable in the amount of NaHCO₃ they provide, which, if not controlled, can affect growth and reproduction (Ward; 1989, 1991). In a comparative study, Ward (1993) found normal larval development within the marsupium using both natural seawater and FORTY FATHOMS® (i.e., Stage I embryo; Stage II eyeless larva; Stage III eyed larva which is the final stage before release) and stressed the importance of proper preparation of the seasalts and monitoring of conditions in the tank. - 2.6.2 The culture media should be aged to allow the build-up of nitrifying bacteria in the filter substrate. To expedite the aging process, 15 mL of a concentrated suspension of *Artemia* should be added daily. If using natural or artificial seawater, the carbonate alkalinity level should be maintained between 90 and 120 mg/L. It is also important to establish an algal community, *Spirulina subsalsa*, in the filter bed (Ward, 1984) and a healthy surface dwelling diatom community, *Nitzchia* sp., on the walls (Ward, 1991) in conjunction with the transfer of part of the biological filter from a healthy tank, when possible. After seven days, the suitability of the medium is checked by adding 20 adult mysids. If the organisms survive for 96 hours, the culture should be suitable for stocking. - 2.6.3 If brine solutions are used, 100% salinity must not be exceeded. This corresponds to a carbonate alkalinity value of approximately 50 mg/L, which will allow relatively normal physiological mechanisms associated with CaCO₃ to occur during certain phases of the life cycle for *M. bahia* (Ward, 1989). Figure 3. Closed recirculating system showing the two phases of the biological filtration system which consists of the filter bed and external power filter (from Ward, 1984; Ward, 1991). ## 2.7 ENVIRONMENTAL FACTORS - 2.7.1 Temperature must be maintained within a range of 24°C to 26°C. Twelve to sixteen hours illumination should be provided daily at 50 to 100 ft-c. The daily light cycle can be provided by combining overhead room lights, cool-white fluorescent bulbs (approx. 50 ft-c, 12L:12D), with individual Grow-lux fluorescent bulbs placed horizontally over each tank (approx. 65 ft-c, 10L:14D). This procedure will avoid acute illumination changes by allowing the room lights to turn on one hour before and one hour after the aquaria lights. A timing device, such as an electronic microprocessor-based timer (ChronTrol®, model CD, or equivalent) can be used to control the light cycle. These procedures are fully outlined in Ward (1984; 1991). - 2.7.2 Good aeration (\ge 60% saturation by vigorous aeration with an air stone), a 10-20 percent exchange of seawater per week, and carbonate in the filtration system are essential in helping to control pH drops caused by oxidation of NH₄-N and NO₂-N by bacteria. - 2.7.3 The single most important environmental factor when culturing *Mysidopsis bahia* or other organisms in recirculators is the conversion of ammonia to nitrite, and nitrite to nitrate by nitrifying bacteria. Spotte (1979) has suggested upper limits of 0.1 mg total NH₄-N/L, 0.1 mg NO₂-N/L and 20 mg NO₃-N/L for good laboratory operation of recirculating systems. For the recirculating system and techniques described here for mysids, the levels of ammonia, nitrite and nitrate never exceeded 0.05 mg of total ammonia-N/L (NH_{3(aq)}and NH₄⁺), 0.08 mg NO₂-N/L and 18 mg NO₃-N/L (Ward, 1991). The toxicity of ammonia is based primarily on unionized ammonia (NH₃) and the proportion of NH₃ species to NH₄⁺ species is dependent on pH, ionic strength and temperature. It is strongly recommended that the concentrations of total ammonia, nitrite and nitrate do not exceed those reported here. The ammonia, nitrite, and nitrate levels can be checked by using color comparison test kits such as those made by LaMotte Chemical or equivalent methods. - 2.7.4 Bacterial oxidation of excreted ammonia by two groups of autotrophic nitrifying bacteria (*Nitrosomonas* and *Nitrobacter*), results in an increase of hydrogen ions, which causes a drop in pH and subsequent loss of buffering capacity. Typically, the culturist responds to the change in pH by adding Na₂CO₃ or NaHCO₃. However, such efforts to buffer against a drop in pH will result in an increase in alkalinity and the uncontrolled use of carbonates can affect reproduction, especially at higher alkalinity values (Ward; 1989, 1991). Therefore, when using carbonates to buffer against pH changes, alkalinity values should not exceed 120 mg/L, which is easily measured by using a titrator kit such as that available from LaMotte Chemical or equivalent methods. - 2.7.5 Figure 4 (Ward, 1991) depicts juvenile production per aquarium, no buffer added, over a period of 24 weeks. A regression line was calculated for these data and the slope and correlation coefficient were analyzed by Student's t test. The data showed that even when the pH dropped as low of 7.5, there was a significant increase (P < 0.001) in juvenile production. However, the pH should be maintained above 7.8 by the controlled use of NaHCO₃ and frequent water exchanges. ### 2.8 FEEDING - 2.8.1 Frequent feeding with live food is necessary to prevent cannibalism of the young by the adults. McKenny (1987) suggests feeding densities of 2-3 *Artemia* per mL of seawater and Lussier et al. (1988) suggest a feeding rate of 150 *Artemia* nauplii per mysid daily. - 2.8.2 In the *M. bahia-Artemia* predator-prey relationship, it is also important to provide sufficient quantities of nutritionally viable free-swimming stage-I
nauplii (Ward, 1987); final hatching from the membranous-sac (prenauplii) into stage-I nauplii does not always occur. *Artemia* cysts that have been incubated for 24 h should be periodically examined with a stereozoom microscope to enumerate free-swimming stage-I nauplii and prenauplii (membranous-sac stage). Figure 4. Juvenile production per aquarium over time (from Ward, 1991). - 2.8.3 It has also been found that heavy metals can affect the hatchability of *Artemia* (Rafiee et al., 1986; Liu and Chen, 1987), therefore, when using natural seawater the level of metals should always be checked. - 2.8.4 Ward (1987; 1991) has tried different brands of *Artemia* from different geographic origins and lot numbers; many achieved stage I nauplii and still caused variability in production of mysids which suggests that they were nutritionally lacking. Leger et al. (1985; 1987a) have drawn attention to poor larval survival of *M. bahia* and low levels of certain polyunsaturated fatty acids found in the *Artemia* fed. The enhancement of *Artemia* has also been studied and there are numerous techniques that have been successful (Leger et al., 1986). - 2.8.5 Ward (1987; 1991) has found that it is important to control the flow of seawater in recirculating systems (keep below 5 L/min) so that *Artemia* does not become limiting to the mysid. Newly hatched *Artemia* should be fed to mysids at least twice a day. To supply *Artemia* to the mysid population on the weekend and prevent cannibalism of newly released mysids, an automatic feeder such as described by Schimmel and Hansen (1975) or Ward (1984; 1991) could be used. Ward (1991) designed a system to hatch *Artemia* when personnel were not available to set up *Artemia* for the following morning and afternoon feeding, such as Monday. Cysts were placed in two 4-L Erlenmeyer flasks (dry), an airstone was placed in each flask, and two vessels overhead were filled with 3500 mL of 30% seawater each. The previously described timer (ChronTrol®, Model CD) was used to open the normally closed solenoids, allowing the seawater to gravity feed and hydrate the cysts. - 2.8.6 It is possible that a surface dwelling diatom community acts as a secondary food that supplements deficient brands of *Artemia*, especially for newly released juveniles. Ward (1991) has observed that a strong fertilizing action is caused by the excretory products of the mysid population. As the concentration of nitrate increases (nitrification) to about 5 mg/L (in approximately 7-10 weeks in an aquarium), a bloom of surface dwelling diatoms, principally *Nitzschia*, but including *Amphora* and *Cocconeis*, occurs in natural or artificial seawater (Ward, 1993). It is interesting to note that, at the same time, there is a dramatic increase in the number of juveniles observed in the aquaria (Figure 4). The diatoms form layers on the walls of the aquarium and swarms of newly released juveniles have been found among them, possibly feeding upon them. - 2.8.7 *Nitzschia* has been identified as a food source for the marine mud snail, *Ilyanassa obsoleta* (Collier, 1981), and the sea urchin, *Lytechinus pictus* (Hinegardner and Tuzzi, 1981). The diatom, *Skeletonema*, has also been used as a supplemental food for *M. bahia* (Venables, 1987). De Lisle and Roberts (1986) reported on the use of rotifers, *Branchionus plicatilis*, as a superior food for juvenile mysids. Rotifers are active swimmers, ranging in size from 100-175 µm as compared to 420-520 µm for *Artemia*, and would provide a good alternative food source if their fatty acid profile is adequate. ## 2.9 CULTURE MAINTENANCE - 2.9.1 To avoid an excessive accumulation of algal growth on the internal surfaces of the aquaria, the walls and internal components should be scraped periodically and the shell substrate (coral or oyster) turned over weekly. Also, the filter plates must be completely covered so that the biological filter functions properly. After a culture tank has been in operation for approximately 2-3 months, detritus builds up on the bottom, which is removed with a fish net after first removing the mysids. The rate of water flow through the tanks should be maintained between 4-5 L/min, and 10-20% of the seawater in each aquarium should be exchanged weekly. - 2.9.2 Some culturists have noted problems with hydrozoan pests in their cultures and there are procedures for their eradication, if necessary (Lawler and Shepard, 1978; Hutton et al., 1986). ## 2.10 PRODUCTION LEVEL 2.10.1 At least four aquaria should be maintained to insure a sufficient number of organisms on a continuing basis. If each 200-L aquarium is initially stocked with between 200 and 500 adults (do not exceed 500 adults), they will provide sufficient numbers of test organisms (Figure 4) each month. If the cultures are correctly maintained, at least 20 percent of the adult population should consist of gravid females (have a visible oostegite brood pouch with young). It is also advantageous to cull older mysids in the population every 4-6 weeks and to move mysids among the four aquaria to diversify the gene pool. ### 2.11 TEST ORGANISMS 2.11.1 Juvenile *Mysidopsis bahia*, one to five days old, are used in the acute toxicity test and the survival, growth and fecundity test (USEPA, 1994). To obtain the necessary number for a test, there are a number of techniques available. A mysid generator such as the one described by Reistsema and Neff (1980) has been successfully used. Another method to obtain juveniles is to take approximately 200 adult females (bearing embryos in their brood pouches) from the stock culture and place them in a large (10 cm X 15 cm) standard fish transfer net (2.0 to 3.0 mm openings) that is partially submerged in an 8-L aquarium containing 4 L of clean culture medium. As the juveniles are released from the brood pouches, they drop through the fish net into the aquarium. The adults and juveniles in the aquarium are fed twice daily 24-hour post hydrated *Artemia*. The adults are allowed to remain in the net for 48 h, and are then returned to the stock tanks. The juveniles that are produced in the small tank may be used in the toxicity tests over a five-day period. Another method for obtaining juveniles (Ward 1987; 1989) is simply to remove juveniles from the stock culture with a fine mesh net, place them in 2-L PYREX® crystalline dishes with media, positioned on a light table that has an attached viewing plate (2 mm squares), and remove juveniles less than 2 mm in length (approximately 24 h old). ### 3. HOLMESIMYSIS COSTATA ### 3.1 MORPHOLOGY AND TAXONOMY 3.1.1 Laboratories unfamiliar with the test organism should collect preliminary samples to verify species identification. Refer to Holmquist (1979) or send samples of mysids and any similar co-occurring organisms to a qualified taxonomist. Request certification of species identification from any organism supplier. Records of verification should be maintained along with a few preserved specimens. A review by Holmquist (1979) considered previous references to *Acanthomysis sculpta* in California to be synonymous with *Holmesimysis costata* and this is considered definitive at this time. ### 3.2 SOURCE OF BROODSTOCK AND TRANSPORT - 3.2.1 Broodstock of *H. costata* are collected by sweeping a small-mesh (0.5-1 mm) hand net through the water just under the surface canopy blades of giant kelp *Macrocystis pyrifera*. Although this method collects mysids of all sizes, attention should be paid to the number of gravid females collected because these are used to produce the juvenile mysids used in toxicity testing. Gravid females are identified by their large, extended marsupia filled with young. Mysids should be collected from waters remote from sources of pollution to minimize the possibility of physiological or genetic adaptation to toxicants. - 3.2.2 Mysids can be transported for a short time (< 3 h) in tightly covered 20 L plastic buckets. The buckets should be filled to the top with seawater from the collection site, and should be gently aerated or oxygenated to maintain dissolved oxygen above 60% saturation. Transport temperatures should remain within 3°C of the temperature at the collection site. - 3.2.3 For longer transport times of up to 36 h, mysids can be shipped in sealed plastic bags filled with seawater. The following transport procedure has been used successfully: - 1) fill the plastic bag with one L of dilution water seawater, - 2) saturate the seawater with oxygen by bubbling pure oxygen for at least 10 minutes, - 3) place 25-30 adult mysids, or up to 100 juvenile mysids in each bag, - 4) for adults add about 20 Artemia nauplii per mysid, for 100 juveniles add a pinch (10 to 20 mg) of ground Tetramin® flake food and 200 newly-hatched Artemia nauplii, - 5) seal the bag securely, eliminating any airspace, and - 6) place it within a second sealed bag in an ice chest. Do not overfeed mysids in transport, as this may deplete dissolved oxygen, causing stress or mortality in transported mysids. A well-insulated ice chest should be cooled to approximately 15°C by adding one 1-L blue ice block for every five 1-L bags of mysids (organisms will tolerate the temperature range of 12 to 16°C). Wrap the ice in newspaper and a plastic bag to insulate it from the mysid bags. Pack the bags tightly to avoid shifting within the cooler. ## 3.3 HOLDING AND CULTURING 3.3.1 After collection, the mysids should be transported directly to the laboratory and placed in seawater tanks or aquaria equipped with flowing seawater or adequate aeration and filtration. Initial flow rates should be adjusted so that any temperature change occurs gradually $(0.5^{\circ}\text{C per h})$. Broodstock will be collected and maintained at two temperatures as follows: 1) maintain the water temperature of $15 \pm 1^{\circ}\text{C}$ for mysids collected south of Pt. Conception, CA and 2) maintain the water temperatures of $13 \pm 1^{\circ}\text{C}$ for mysids collected
north of Pt. Conception, CA. Mysids can be cultured in tanks ranging from 4 to 1000 L. Tanks should be equipped with gentle aeration and blades of *Macrocystis* to provide habitat. Static culture tanks can be used if there is constant aeration, temperature control, and frequent water changes (one half the water volume changed at least twice a week). Maintain culture density below 20 animals per L by culling out adult males or juveniles. ### 3.4 FEEDING 3.4.1 Adult mysids should be fed 100 *Artemia* nauplii per mysid per day. Juveniles should be fed 5 to 10 newly released *Artemia* nauplii per juvenile per day and a pinch (10 to 20 mg) of ground Tetramin® flake food per 100 juveniles per day. Static chambers should be carefully monitored and rations adjusted to prevent overfeeding and fouling of culture water. ## 3.5 TEST ORGANISMS - 3.5.1 Juvenile *Holmesimysis costata* three to four days old, are used in the acute toxicity test and the survival and growth test (Hunt *et al.*, 1997; USEPA, 1995). To obtain the necessary number for a test, there are a number of techniques available for the acute toxicity test and the survival and growth test (USEPA, 1995). Approximately 150 gravid female mysids will typically produce approximately 400 juveniles. Gravid females can be identified by their large, extended marsupia filled with (visible) eyed juveniles. Marsupia appear distended and gray when females are ready to release young, due to presence of the juveniles. Gravid females are easily isolated from other mysids using the following technique: 1) use a small dip net to capture about 100 mysids from the culture tank, 2) transfer the mysids to a screen-bottomed plastic tube (150 µm-mesh, 25-cm diameter) partly immersed in a water bath or bucket, 3) lift the screen-tube out of the water to immobilize mysids on the damp screen, 4) gently draw the gravid females off the screen with a suction bulb and fire-polished glass tube (5-mm I.D.), and 5) collect gravid females in a separate screen tube. Re-immerse the screen continuously during the isolation process; mysids should not be exposed to air for more than a few seconds at a time. - 3.5.2 Four to five days before a toxicity test begins, transfer gravid females into a removable, 2-mm-mesh screened cradle suspended within an aerated 80-L aquarium. Before transfer, make sure there are no juveniles in with the adult females. Extraneous juveniles are excluded to avoid inadvertently mixing them with the soon-to-be released juveniles used in testing. Provide the gravid females with newly hatched *Artemia* nauplii (approximately 200 per mysid) to help stimulate juvenile release. *Artemia* can be provided continuously throughout the night from an aerated reservoir holding approximately 75,000 *Artemia*. Direct the flow from the feeder into the screened compartment with the females, and add a few blades of *Macrocystis* for habitat. The females are placed within the screened compartment so that as the juveniles are released, they can swim through the mesh into the bottom of the aquarium. Outflows on flow-through aquaria should be screened (150-μm-mesh) to retain juveniles and allow some *Artemia* to escape. - 3.5.3 Juveniles are generally released at night, so it is important to turn off all lights at night to promote release. In the morning, the screened compartment containing the females should be removed and placed in a separate aquarium. Juveniles should be slowly siphoned through a wide-diameter hose into a 150-µm-mesh screen-bottom tube (25 cm diam.) immersed in a bucket filled with clean seawater. Once the release aquarium is emptied, it should be washed with hot fresh water to eliminate stray juveniles that might mix with the next cohort. - 3.5.4 After collection, the number of juveniles should be estimated visually or by counting subsamples with a small beaker. If there are not enough juveniles, the juveniles from previous or subsequent releases can be combined so that the test is initiated with three and/or four-day old juveniles. Mysids 2-days old and younger have higher mortality rates, while mysids older than four days may vary in their toxicant sensitivity or survival rate (Hunt *et al.*, 1989; Martin *et al.*, 1989). - 3.5.5 Test juveniles should be transferred to additional screen-tubes (or to 4-L static beakers if flowing seawater is unavailable). The screen-tubes are suspended in a 15-L bucket so that dilution water seawater (0.5 L/min) can flow into the tube, through the screen, and overflow from the bucket. Check water flow rates (< 1 L/min) to make sure that juveniles or *Artemia* nauplii are not forced down onto the screen. The height of the bucket determines the level of water in the screen tube. About 200 to 300 juveniles can be held in each screen-tube (200 juveniles per static 4-L beaker). Juveniles should be fed 40 newly hatched *Artemia* nauplii per mysid per day and a pinch (10 to 20 mg) of ground Tetramin[®] flake food per 100 juveniles per day. A blade of *Macrocystis* (well rinsed in seawater) should be added to each chamber. Chambers should be gently aerated and temperature controlled at $15 \pm 1^{\circ}$ C (or $13 \pm 1^{\circ}$ C if collected north of Pt. Conception). Half of the seawater in static chambers should be changed at least once between isolation and test initiation. - 3.5.6 The day juveniles are isolated is designated day 0 (the morning after their nighttime release). The toxicity test should begin on day three or four. For example, if juveniles are isolated on Friday, the toxicity test would begin on the following Monday or Tuesday. Pool all of the test juveniles into a 1-L beaker. Using a 10-mL wide-bore pipet or fire-polished glass tube (approximately 2-3 mm I.D), place one or two juveniles into as many plastic cups (one for each test chamber). These cups should contain enough clean dilution seawater to maintain water quality and temperature during the transfer process (approximately 50 mL per cup). When each of the cups contains one or two juveniles, repeat the process, adding mysids until each cup contains 10 organisms. Carefully pour or pipet off excess water in the cups, leaving less than 5 mL with the test mysids. This 5 mL volume can be estimated visually after initial measurements. Carefully pour or pipet the juveniles into the test chambers immediately after reducing the water volume. Gently rocking the water back and forth before pouring may help prevent juveniles from clinging to the walls of the randomization cups. Juveniles can become trapped in drops; have a squirt bottle ready to gently rinse down any trapped mysids. If more than 5 mL of water is added to the test solution with the juveniles, report the amount on the data sheet. Be sure that all water used in culture, transfer, and test solutions is within 1°C of the test temperature. Because of the small volumes involved in the transfer process, temperature control is best accomplished in a constant-temperature room. - 3.5.7 Immobile mysids that do not respond to a stimulus are considered dead. The stimulus should be two or three gentle prods with a disposable pipet. Mysids that exhibit any response clearly visible to the naked eye are considered living. The most commonly observed movement in moribund mysids is a quick contraction of the abdomen. This or any other obvious movement qualifies a mysid as alive. ### SELECTED REFERENCES - Anderson, J.W., Neff, B.A. Cox, H.E. Tatem, and G.H. Hightower. 1974. Characteristics of dispersions and water-soluble extracts of crude and refined oils and their toxicity to estuarine crustaceans and fish. Mar. Biol. 27:75-88. - Anonymous. 1979. Test 6: Mysidopsis bahia life cycle. Fed. Reg. 44(53):16291. - Astthorsson, O.S., and R. Ralph. 1984. Growth and molting of *Neomysisinteger* (Crustacea, Mysidacea). Mar. Biol. 79:55-61. - Bahner, L.H., C.D. Craft, and D.R. Nimmo. 1975. A saltwaterflow-through bioassay method with controlled temperature and salinity. Progr. Fish-Cult. 37:126-129. - Bahner, L.H., A.J. Wilson, Jr., J.M. Sheppard, J.M. Patrick, Jr., L.R. Goodman, and G.E. Walsh. 1977. KEPONE® bioconcentration, accumulation, loss, and transfer through estuarine food chains. Chesapeake Sci. 18:299-308. - Bidwell, J.P., and S. Spotte. 1985. Artificial Seawaters. Jones and Bartlett Publishers, Inc., Boston, Ma. - Brattegard, T. 1969. Marine biological investigations in the Bahamas. 10. Mysidacea from shallow water in the Bahamas and southern Florida. Part I. Sarsia 39:17-106. - Breteler, R.J., J.W. Williams, and R.L. Buhl. 1982. Measurements of chronic toxicity using the opossum shrimp *Mysidopsis bahia*. Hydrobiologia. 93:189-194. - Buikema, A.L., Jr., B.R. Niederlehner, and J. Cairns, Jr. 1981. The effects of simulated refinery effluent and its components on the estuarine crustacean, *Mysidopsis bahia*. Arch. Environm. Contam. Toxicol. 10:231-240. - Carr, R.S., L.A. Reitsema, and J.M. Neff. 1980. In: Proceedings of Research on Environmental Fate and Effects of Drilling Fluids and Cutting. Vol. II, Amer. Petrol. Inst., pp. 944-960. - Clark, W. 1971. Mysids of the southern kelp region. In: W. North, ed., Biology of Giant Kelp Beds (Macrocystis) in California. J. Cramer Publisher, Lehre, Germany: p 369-380. - Clutter, R.I. 1967. Zonation of nearshore mysids. Ecology. 48(2): 200-208. - Clutter, R.I. 1969. The microdistribution and social behavior of some pelagic mysids. J. Exp. Mar. Biol. Ecol. 3: 125-155. - Collier, J.R. 1981. Methods of obtaining and handling eggs and embryos of the marine mud snail *Ilyanassa obsoleta*. pp. 217-232, In: Laboratory animal management, marine invertebrates. National Academy Press, Washington, DC. - Cripe, G.M., D.R. Nimmo, and T.L. Hamaker. 1981. Effects of two organophosphate pesticides on swimming stamina of the mysid *Mysidopsis bahia*. In: Vernberg, F.J., A. Calabrese, F.P. Thurberg, and W.B. Vernberg, eds., Biological Monitoring of Marine Pollutants. Academic Press, New York. pp. 21-36. - De
Lisle, P.F., and M.H. Roberts, Jr. 1986. The effects of acclimation on the mysid, *Mysidopsis bahia* Molenock. Comparative Biochemistry and Physiology 85A(2):383-387. - Farrell, D.H. 1979. Guide to the shallow-water mysids from Florida. Fla. Dept. Environ. Reg., Techn. Ser. 4(1):1-69. - Fotheringham, N., and S.L. Brunenmeister. 1975. Common marine invertebrates of the northwestern Gulf coast. Gulf Publ. Co., Houston, Texas. - Gentile, S.M., J.H. Gentile, J. Walker, and J.F. Heltshe. 1982. Chronic effects of cadmium on two species of mysid shrimp: *Mysidopsis bahia* and *M. bigelowi*. Hydrobiol. 93:195-204. - Green, J.M. 1970. Observations on the behavior and larval development of *Acanthomysis sculpta* (Tattersall), (Mysidacea). Can. J. Zool. 48: 289-292. - Heard, R.W. 1982. Guide to the common tidal marsh invertebrates of the northeastern Gulf of Mexico. Publ. No. MASGP-79-004, Mississippi-Alabama Sea Grant Consortium, Ocean Springs, Mississippi. - Heard, R.W., W.W. Price, and K.C. Stuck. 1987. Mysid identification workshop. The Gulf Coast Research Laboratory, Oceans Springs, Mississippi (unpublished). - Hinegardner, R.T., and M.M.R. Tuzzi. 1981. Laboratory culture of the sea urchin *Lytechinus pictus*. In: Laboratory animal management, marine invertebrates. National Academy Press, Washington, DC. pp. 291-302. - Holmquist, C. 1979. Mysis costata and its relations (Crustacea, Mysidacea). Zool. Jb. Syst. 106: 471-499. - Hunt, J.W., B.S. Anderson, S.L. Turpen, A.R. Coulen, M. Martin, F.H. Palmer, and J.J. Janik. 1989. Marine bioassay project fourth report: Experimental evaluation of effluent toxicity testing protocols with giant kelp, mysids, red abalone, and topsmelt. Report 89-5WQ. California State Water Resources Control Board, Sacramento, CA. - Hunt, J.W., B.S. Anderson, S.L.Turpen, M.A. Englund, and W.J. Piekarski. 1997. Precision and sensitivity of a seven-day growth and survival toxicity test using the west coast marine mysid crustacean *Holmesimysis costata*. Environ. Toxicol. Chem. 16: 824-834. - Hutton, C.H., P.F. Delisle, M.H. Roberts, and D.A. Hepworth. 1986. *Chrysaora quinquecirrha*: a predator on mysids (*Mysidopsis bahia*) in culture. Progr. Fish-Cult. 48:154-155. - Jacobs, F., and G.C. Grant. 1974. Acute toxicity of unbleached kraft mill effluent (UKME) to the oppossum shrimp, *Neomysis americana* Smith. Water Res. 8:439-445. - Jensen, J.P. 1958. The relation between body size and number of eggs in marine malacostraces. Meddr. Danm. Fisk.og Havunders 2:1-25. - Johns, D.M., W.J. Berry, and W. Walton. 1981. International study on *Artemia*. XVI. Survival, growth and reproductive potential of the mysid *Mysidopsis bahia* Molenock fed various geographical strains of the brine shrimp *Artemia*. J. Exp. Mar. Biol. Ecol. 53:209-219. - Kalle, K. 1971. Salinity: general introduction. <u>In</u>: O. Kinne, ed., Marine Ecology, Vol. 1, part 2. London, Wiley-Interscience. pp. 683-688. - Lawler, A.R., and S.L. Shepard. 1978. Procedures for eradication of hydrozoan pests in closed-system mysid culture. Gulf Res. Rept. 6:177-178. - Lee, D.R., and A.L. Buikema, Jr. 1979. Molt-Related sensitivity of *Daphnia pulex* in toxicity testing. J. Fish. Res. Bd. Can. 36:1129-1133. - Leger, P., D.A. Bengtson, K.L. Simpson, and P. Sorgeloos. 1986. The use and nutritional value of *Artemia* as a food source. Oceanogr. Mar. Biol. Ann. Rev. 24:521-623. - Leger, P., J.F. De Queiroz, and P. Sorgeloos. 1987a. The effect of broodstock diet on reproductive activity and offspring quality in the marine crustacean *Mysidopsis bahia* (Molenock). Proceedings of Aquaculture Europe, Amsterdam, Holland, June 2-5, 1987. (In Press). - Leger, P., D.M. Johns, and P. Sorgeloos. 1987b. Description of a standard bioassay with the marine crustacean *Mysidopsis bahia* (M.) for the evaluation of the nutritional effectiveness of *Artemia* nauplii and metanauplii. In: P. Sorgeloos, D.A. Bengtson, W. Decleir, and E. Jaspers, eds., *Artemia* Research and its Applications. Vol. 3. Morphology, Genetics, Strain characterization, Toxicology. Universa. Press, Wetteren, Belgium. (In Press). - Leger, P., and P. Sorgeloos. 1982. Automation in stock-culture maintenance and juvenile separation of the mysid, *Mysidopsis bahia* (Molenock). Aquacult. Eng. 1:45-53. - Leger, P., P. Sorgeloos, O.M. Millamena, and K.L. Simpson. 1985. International study on *Artemia*. XXV. Factors determining the nutritional effectiveness of *Artemia*: The relative impact of chlorinated Hydrocarbons and essential fatty acids in San Francisco Bay and San Pablo Bay *Artemia*. J. Exper. Mar. Biol. Ecol. 93:71-82. - Liu, P.C., and J.C. Chen. 1987. Effects of heavy metals on the hatching rates of brine shrimp *Artemia salina* cysts. J. World Aquacult. Soc. 18(2):78-83. - Lussier, S.M., A. Kuhn, M.J. Chammas, and J. Sewall. 1988. Techniques for the laboratory culture of *Mysidopsis* species (Crustacea: Mysidacea). Environ. Toxicol. Chem. 7:969-977. - Lussier, S.M., J.H. Gentile, and J. Walker. 1985. Acute and chronic effects of heavy metals and cyanide on *Mysidopsis bahia* (Crustacea: Mysidacea). Aquat. Toxicol. 7:25-35. - Martin, M., J.W. Hunt, B.S. Anderson, S.L. Turpen, and F.H. Palmer. 1989. Experimental evaluation of the mysid *Holmesimysis costata* as a test organism for effluent toxicity testing. Environ. Toxicol. Chem. 8: 1003-1012. - Mauchline, J. 1980. The biology of mysids and euphausiids. Adv. Mar. Biol. 18. 369 pp. - Molenock, J. 1969. *Mysidopsis bahia*, a new species of mysid (Crustacea: Mysidacea) from Galveston Bay, Texas. Tulane Stud. Zool. Bot. 15(3): 113-116. - Morgan, M.D. 1982. The ecology of Mysidacea. Developments in Hydrobiology 10. W. Junk, Publ., The Hague, Netherlands. 232 pp. - Nesler, T.P., and E.P. Bergersen, eds. 1991. Mysids in fisheries: hard lessons from headlong introductions. Proceedings of a symposium held at the 118th Annual Meeting of the American Fisheries Society, September 9-15, 1988, Toronto, Ontario. Amer. Fish. Soc. Symp. 9. 199 pp. - Nimmo, D.R., L.H. Bahner, R.A. Rigby, J.M. Sheppard, and A.J. Wilson, Jr. 1977. *Mysidopsis bahia*: an estuarine species suitable for life-cycle toxicity tests to determine the effects of a pollutant. In: F.L. Mayer and J.L. Hamelin, eds., Aquatic Toxicology and Hazard Evaluation, ASTM STP 634, American Society for testing and Materials, Philadelphia, Pennsylvania. pp. 109-111. - Nimmo, D.R., and T.L. Hamaker. 1982. Mysids in toxicity testing a review. Hydrobiol. 93:171-178. - Nimmo, D.R., T.L. Hamaker, J.C. Moore, and C.A. Sommers. 1979. Effect of Diflubenzuron on an estuarine crustacean. Bull. Environm. Contam. Toxicol. (22):767-770. - Nimmo, D.R., T.L. Hamaker, E. Matthews, and J.C. Moore. 1981. An overview of the acute and chronic effects of first and second generation pesticides on an estuarine mysid. In: Vernberg, F.J., A. Calabrese, F.P. Thurberg, and W.B. Vernberg, eds., Biological Monitoring of Marine Pollutants. Academic Press, New York. pp. 3-19. - Nimmo, D.R., T.L. Hamaker, E. Matthews, and W.T. Young. 1982. The long-term effects of suspended particulates on the survival and reproduction of the mysid shrimp, *Mysidopsis bahia*, in the laboratory. In: G.F. Mayer, ed., Ecological Stress and the New York Bight: Science and Management. Estuarine Res. Found., Columbia, S. Carolina. pp. 41-50. - Nimmo, D.R., T.L. Hamaker, J.C. Moore, and R.A. Wood. 1980. Acute and chronic effects of Dimilin on survival and reproduction of *Mysidopsis bahia*. In: J.G. Eaton, P.R. Parrish, and A.C. Hendricks, eds., ASTM STP 707, American Society for Testing and Materials, Philadelphia, Pennsylvania. pp. 366-376. - Nimmo, D.R., R.J. Mirenda, and C.A. Carlson. 1991. Culturing the estuarine mysid, *Mysidopsis bahia*: a synopsis of three case studies. <u>In</u>: T.P. Nesler and E. P. Bergersen, eds., Mysids in fisheries: hard lessons from headlong introductions. Proceedings of a symposium held at the 118th Annual Meeting of the American Fisheries Society, September 9-15, 1988, Toronto, Ontario. Amer. Fish. Soc. Symp. 9, pp. 160-168. - Nimmo, D.R., R.A. Rigby, L.H. Bahner, and J.M. Sheppard. 1978. The acute and chronic effects of cadmium on the estuarine mysid, *Mysidopsis bahia*. Bull. Environm. Contam. Toxicol. 19(1):80-84. - Price, W.W. 1982. Key to the shallow water Mysidacea of the Texas coast with notes on their ecology. Hydrobiol. 93(1/2):9-21. - Price, W.W., A.P. McAllister, R.M. Towsley, and M. DelRe. 1986. Mysidacea from continental shelfwaters of the northwestern Gulf of Mexico. Contrib. Marine Sci. 29:45-58. - Price, W.W., R.W. Heard, and L. Stuck. 1994. Observations on the genus *Mysidopsis* Sars, 1864 with the designation of a new genus, *Americamysis*, and the descriptions of *Americamysis alleni* and *Americamysis stucki* (Peracarida: Mysidacea: Mysidace), from the Gulf of Mexico. Procedure. Biol. Soc. Wash. 107: 680-698. - Rafiee, P., C.O. Matthews, J.C. Bagshaw, and T.H. MacRae. 1986. Reversible arrest of *Artemia* development by cadmium. Can. J. Zool. 64:1633-1641. - Reitsema, L.A. 1981. The growth, respiration, and energetics of *Mysidopsis almyra* (Crustacea; Mysidacea) in relation to temperature, salinity, and hydrocarbon exposure. Ph.D. thesis, Texas A&M University, College Station, Texas. - Reitsema, L.A., and J.M. Neff. 1980. A recirculating artificial seawater system for the laboratory culture of *Mysidopsis bahia* (Crustacea; Pericaridea). Estuaries 3:321-323. - Roberts, M.H., J.E. Warinner, C.F. Tsai, D. Wright, and L.E. Cronin. 1982. Comparison of estuarine species sensitivities to three toxicants. Arch. Environm. Contam. Toxicol. 11:681-692. - Salazar, M.H., S.C. U'ren, and S.A. Steinert. 1980. Sediment bioassays for San Diego dredging project. Naval Oceans Systems Center, San Diego, Calif. Techn. Rept. 570. 46 pp. - Schimmel, S.C., and D.J. Hansen. 1975. An automatic brine shrimp feeder for aquatic bioassays. J. Fish. Res. Board Can. 32: 314-316. - Shuba, P.J., H.E. Tatem, and J.H. Carroll. 1978.
Biological assessment methods to predict the impact of open-water disposal of dredged material. Techn. Rept. D-78-50. U.S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. 77 pp. - Spotte, S. 1979. Fish and invertebrate culture. John Wiley and Sons, New York, NY, 179 pp. - Stuck, K.C., H.M. Perry, and R.W. Heard. 1979a. An annotated key to the Mysidacea of the North Central Gulf of Mexico. Gulf Res. Rept. 6(3):225-238. - Stuck, K.C., H.M. Perry, and R.W. Heard. 1979b. Records and range extensions of Mysidacea from coastal and shelf water of the Eastern Gulf of Mexico. Gulf Res. Rept. 6(3):39-248. - Tattersall, W.M., and Tattersall. 1951. The British Mysidacea. Royal Soc. London. 460 pp. - Turpen, S.L, J.W. Hunt, B.S. Anderson, and J.S. Pearse. 1994. Population structure, growth and fecundity of the kelp forest mysid, *Holmesmysis costata* in Monterey Bay, California. J. Crust. Biol. 14(4): 657-664. - USEPA. 1978a. Methods for acute static toxicity tests with mysid shrimp (*Mysidopsis bahia*). P.W. Borthwick. <u>In:</u> Bioassay Procedures for the Ocean Disposal Permit Program. U. S. Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, Florida. EPA-600/9-78-010. pp. 61-63. - USEPA. 1978b. Culturing the mysid (*Mysidopsis bahia*) in flowing seawater or a static system. D.R. Nimmo, T.L. Hamaker, and C.A. Sommers. <u>In</u>: Bioassay Procedures for the Ocean Disposal Permit Program, U. S. Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, Florida. EPA-600/9-78-010. pp. 64-68. - USEPA. 1978c. Entire life cycle toxicity test using mysids (*Mysidopsis bahia*) in flowing water. D.R. Nimmo, T.L. Hamaker, and C.A. Sommers. <u>In</u>: Environmental Protection Agency, Environmental Research Laboratory, Gulf Breeze, Florida. EPA-600/9-78-010. pp. 64-68. - USEPA. 1981a. Acephate, aldicarb, carbophenothion, DEF, EPN, ethoprop, methyl parthion, and phorate: their acute and chronic toxicity, bioconcentration potential, and persistence as related to marine environments. EPA-600/4-81-041. - USEPA. 1981b. Acute toxicity test standard using mysid shrimp in static and flow-through systems. Toxic Substances Control Act, Section 4. Office of Toxic Substances, Health and Environmental Review Division, U. S. Environmental Protection Agency, Washington, D.C. 19 pp. - USEPA. 1981c. Chronic toxicity test standard using mysid shrimp in a flow-through system. Toxic Substances Control Act, Section 4. Office of Toxic Substances, Health and Environmental Review Division, U. S. Environmental Protection Agency, Washington, D.C. 43 pp. - USEPA. 1981d. Technical support document for using mysid shrimp in acute and chronic toxicity tests. Toxic Substances Control Act, Section 4. Office of Toxic Substances, Health and Environmental Review Division, U. S. Environmental Protection Agency, Washington, D.C. 43 pp. - USEPA. 1982. Culturing and chronic toxicity of *Mysidopsis bahia* using artificial seawater. D.R. Nimmo, and E.S. Iley, Jr. Office of Toxic Substances, U. S. Environmental Protection Agency, Washington, D.C. Publ. PA 902. - USEPA. 1984. Acute toxicity of eight laboratory-prepared generic drilling fluids to mysids (*Mysidopsis bahia*). T.W. Duke, P.R. Parish, R.M. Montgomery, S.D. Macauley, and G.M. Cripe. U. S. Environmental Protection Agency, Wash., D.C. EPA 600/S3-84-067. - USEPA. 1987. Optimization of environmental factors during the life cycle of *Mysidopsis bahia*. C.L. McKenney, Jr. Environmental Research Brief, U. S. Environmental Protection Agency, Gulf Breeze, Florida. EPA 600/M-87/004. - USEPA. 1990. Mysid (*Mysidopsis bahia*) survival, growth, and fecundity toxicity test. Supplemental report for training videotape. Office of Water, U. S. Environmental Protection Agency, Washington, D.C. EPA/505/8-90-006a. - USEPA. 1994. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms, 2nd ed. Environmental Monitoring Systems Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/4-91/003. - USEPA, 1995. Short-term methods for estimating the chronic toxicity of effluents and receiving waters to west coast marine and estuarine organisms. National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH. EPA/600/R-95-136. - Venables, B. 1987. (Rapporteur) *Mysidopsis* sp.: life history and culture. A report from a workshop held in Gulf Breeze, Florida, October 15-16, 1986. (Unpublished Report) Institute of Applied Sciences, North Texas State Univ., Denton, Tx. 41 pp. - Ward, S.H. 1984. A system for laboratory rearing of the mysid, *Mysidopsis bahia* Molenock. Progr. Fish-Cult. 46(3):170-175. - Ward, S.H. 1987. Feeding response of the mysid Mysidopsis bahia reared on Artemia. Progr. Fish-Cult. 49(1):29-33. - Ward, S.H. 1989. The requirements for a balanced medium in toxicological experiments using *Mysidopsis bahia* with special reference to calcium carbonate. <u>In</u>: U.M. Cowgill and L.R. Williams, eds., Aquatic Toxicology and Hazard Assessment, ASTM STP 1027, American Society for Testing and Materials, Philadelphia, Pennsylvania. pp. 402-412. - Ward, S.H. 1991. Techniques to enhance laboratory culture of *Mysidopsis bahia* Molenock. <u>In:</u> T.P. Nesler and E. P. Bergersen, eds., Mysids in fisheries: hard lessons from headlong introductions. Proceedings of a symposium held at the 118th Annual Meeting of the American Fisheries Society, September 9-15, 1988, Toronto, Ontario. Amer. Fish. Soc. Symp. 9, pp. 181-192. - Ward, S.H. 1993. A comparison of natural and artificial seawater for culturing and toxicity testing with *Mysidopsis bahia*. In: W. Landis, J.S. Hughes, and M.A. Lewis, eds. Proceedings of the First Symposium on Environmental Toxicology and Risk Assessment, April 14-16, 1991, Atlantic City, New Jersey. ASTM STP 1179, American Society for Testing and Materials, Philadelphia, Pennsylvania. - Whittmann, K.J. 1984. Ecophysiology of marsupial development and reproduction in Mysidacea (Crustacea). Oceanogr. Mar. Biol. Ann. Rev. 22:393-428. - Williams, A.B. 1972. A ten-year study of meroplankton in North Carolina estuaries: Mysid shrimps. Ches. Sci. 13(4):254-262.